File: lfortran_intrinsic_sin.f90

package info (click to toggle)
lfortran 0.58.0-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 54,512 kB
  • sloc: cpp: 162,179; f90: 68,251; python: 17,476; ansic: 6,278; yacc: 2,334; sh: 1,317; fortran: 892; makefile: 33; javascript: 15
file content (349 lines) | stat: -rw-r--r-- 13,471 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
module lfortran_intrinsic_sin
    ! Implicit dependencies
    ! abs impure/math
    ! modulo pure/math2
    ! min builtin/array
    ! max builtin/array
    use iso_c_binding, only: c_double, c_int
    use, intrinsic :: iso_fortran_env, only: sp => real32, dp => real64
    implicit none
    private
    public sin
    
    interface sin
        module procedure dsin
    end interface
    
    real(dp), parameter :: pi = 3.1415926535897932384626433832795_dp
    
    contains
    
    ! sin --------------------------------------------------------------------------
    ! Our implementation here is based off of the C files from the Sun compiler
    !
    ! Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    !
    ! Developed at SunSoft, a Sun Microsystems, Inc. business.
    ! Permission to use, copy, modify, and distribute this
    ! software is freely granted, provided that this notice
    ! is preserved.
    
    ! sin(x)
    ! https://www.netlib.org/fdlibm/s_sin.c
    ! Return sine function of x.
    !
    ! kernel function:
    !	__kernel_sin		... sine function on [-pi/4,pi/4]
    !	__kernel_cos		... cose function on [-pi/4,pi/4]
    !	__ieee754_rem_pio2	... argument reduction routine
    !
    ! Method.
    !      Let S,C and T denote the sin, cos and tan respectively on
    !	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
    !	in [-pi/4 , +pi/4], and let n = k mod 4.
    !	We have
    !
    !          n        sin(x)      cos(x)        tan(x)
    !     ----------------------------------------------------------
    !          0          S           C             T
    !          1          C          -S            -1/T
    !          2         -S          -C             T
    !          3         -C           S            -1/T
    !     ----------------------------------------------------------
    !
    ! Special cases:
    !      Let trig be any of sin, cos, or tan.
    !      trig(+-INF)  is NaN, with signals;
    !      trig(NaN)    is that NaN;
    !
    ! Accuracy:
    !	TRIG(x) returns trig(x) nearly rounded
    !
    
    
    real(dp) function dsin(x) result(r)
        real(dp), intent(in) :: x
        real(dp) :: y(2)
        integer :: n
        if (abs(x) < pi/4) then
            r = kernel_dsin(x, 0.0_dp, 0)
        else
            n = rem_pio2_c(x, y)
            select case (modulo(n, 4))
                case (0)
                    r =  kernel_dsin(y(1), y(2), 1)
                case (1)
                    r =  kernel_dcos(y(1), y(2))
                case (2)
                    r = -kernel_dsin(y(1), y(2), 1)
                case default
                    r = -kernel_dcos(y(1), y(2))
            end select
        end if
    end function
    
    
    
    !  __kernel_sin( x, y, iy)
    ! http://www.netlib.org/fdlibm/k_sin.c
    !  kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
    !  Input x is assumed to be bounded by ~pi/4 in magnitude.
    !  Input y is the tail of x.
    !  Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
    !
    !  Algorithm
    ! 	1. Since sin(-x) = -sin(x), we need only to consider positive x.
    ! 	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
    ! 	3. sin(x) is approximated by a polynomial of degree 13 on
    ! 	   [0,pi/4]
    ! 		  	         3            13
    ! 	   	sin(x) ~ x + S1*x + ... + S6*x
    ! 	   where
    !
    !  	|sin(x)         2     4     6     8     10     12  |     -58
    !  	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
    !  	|  x 					           |
    !
    ! 	4. sin(x+y) = sin(x) + sin'(x')*y
    ! 		    ~ sin(x) + (1-x*x/2)*y
    ! 	   For better accuracy, let
    ! 		     3      2      2      2      2
    ! 		r = x! (S2+x! (S3+x! (S4+x! (S5+x! S6))))
    ! 	   then                   3    2
    ! 		sin(x) = x + (S1*x + (x! (r-y/2)+y))
    
    elemental real(dp) function kernel_dsin(x, y, iy) result(res)
        real(dp), intent(in) :: x, y
        integer, intent(in) :: iy
        real(dp), parameter :: half = 5.00000000000000000000e-01_dp
        real(dp), parameter :: S1 = -1.66666666666666324348e-01_dp
        real(dp), parameter :: S2 =  8.33333333332248946124e-03_dp
        real(dp), parameter :: S3 = -1.98412698298579493134e-04_dp
        real(dp), parameter :: S4 =  2.75573137070700676789e-06_dp
        real(dp), parameter :: S5 = -2.50507602534068634195e-08_dp
        real(dp), parameter :: S6 =  1.58969099521155010221e-10_dp
        real(dp) :: z, r, v
        if (abs(x) < 2.0_dp**(-27)) then
            res = x
            return
        end if
        z = x*x
        v = z*x
        r = S2+z*(S3+z*(S4+z*(S5+z*S6)))
        if (iy == 0) then
            res = x + v*(S1+z*r)
        else
            res = x-((z*(half*y-v*r)-y)-v*S1)
        end if
    end function
    
    ! __kernel_cos( x,  y )
    ! https://www.netlib.org/fdlibm/k_cos.c
    ! kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
    ! Input x is assumed to be bounded by ~pi/4 in magnitude.
    ! Input y is the tail of x.
    !
    ! Algorithm
    !	1. Since cos(-x) = cos(x), we need only to consider positive x.
    !	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
    !	3. cos(x) is approximated by a polynomial of degree 14 on
    !	   [0,pi/4]
    !		  	                 4            14
    !	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
    !	   where the remez error is
    !
    ! 	|              2     4     6     8     10    12     14 |     -58
    ! 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
    ! 	|    					               |
    !
    ! 	               4     6     8     10    12     14
    !	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
    !	       cos(x) = 1 - x*x/2 + r
    !	   since cos(x+y) ~ cos(x) - sin(x)*y
    !			  ~ cos(x) - x*y,
    !	   a correction term is necessary in cos(x) and hence
    !		cos(x+y) = 1 - (x*x/2 - (r - x*y))
    !	   For better accuracy when x > 0.3, let qx = |x|/4 with
    !	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
    !	   Then
    !		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
    !	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
    !	   magnitude of the latter is at least a quarter of x*x/2,
    !	   thus, reducing the rounding error in the subtraction.
    
    
    elemental real(dp) function kernel_dcos(x, y) result(res)
        real(dp), intent(in) :: x, y
        real(dp), parameter :: one=  1.00000000000000000000e+00_dp
        real(dp), parameter :: C1 =  4.16666666666666019037e-02_dp
        real(dp), parameter :: C2 = -1.38888888888741095749e-03_dp
        real(dp), parameter :: C3 =  2.48015872894767294178e-05_dp
        real(dp), parameter :: C4 = -2.75573143513906633035e-07_dp
        real(dp), parameter :: C5 =  2.08757232129817482790e-09_dp
        real(dp), parameter :: C6 = -1.13596475577881948265e-11_dp
        real(dp) :: z, r, qx, hz, a
        if (abs(x) < 2.0_dp**(-27)) then
            res = one
            return
        end if
        z = x*x
        r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))))
        if (abs(x) < 0.3_dp) then
            res = one - (0.5_dp*z - (z*r - x*y))
        else
            if (abs(x) > 0.78125_dp) then
                qx = 0.28125_dp
            else
                qx = abs(x)/4
            end if
            hz = 0.5_dp*z-qx
            a  = one-qx
            res = a - (hz - (z*r-x*y))
        end if
    end function
    
    
    integer function rem_pio2_c(x, y) result(n)
        ! Computes 128bit float approximation of modulo(x, pi/2) returned
        ! as the sum of two 64bit floating point numbers y(1)+y(2)
        ! This function roughly implements:
        !   y(1) = modulo(x, pi/2)         ! 64bit float
        !   y(2) = modulo(x, pi/2) - y(1)  ! The exact tail
        !   n = (x-y(1)) / (pi/2)
        ! The y(1) is the modulo, and y(2) is a tail. When added directly
        ! as y(1) + y(2) it will be equal to just y(1) in 64bit floats, but
        ! if used separately in polynomial approximations one can use y(2) to get
        ! higher accuracy.
        real(dp), intent(in) :: x
        real(dp), intent(out) :: y(2)
        
        interface
            integer(c_int) function ieee754_rem_pio2(x, y) bind(c)
            use iso_c_binding, only: c_double, c_int
            real(c_double), value, intent(in) :: x
            real(c_double), intent(out) :: y(2)
            end function
        end interface
        
        n = ieee754_rem_pio2(x, y)
    end function
    
    
    ! Our implementation here is designed around range reduction to [-pi/2, pi/2]
    ! Subsequently, we fit a 64 bit precision polynomials via Sollya (https://www.sollya.org/)
    ! -- Chebyshev (32 terms) --
    ! This has a theoretical approximation error bound of [-7.9489615048122632526e-41;7.9489615048122632526e-41]
    ! Due to rounding errors; we obtain a maximum error (w.r.t. gfortran) of ~ E-15 over [-10, 10]
    ! -- Remez (16 terms) -- [DEFAULT] (fewer terms)
    ! Due to rounding errors; we obtain a maximum error (w.r.t. gfortran) of ~ E-16 over [-10, 10]
    ! For large values, e.g. 2E10 we have an absolute error of E-7
    ! For huge(0) we have an absolute error of E-008
    ! TODO: Deal with very large numbers; the errors get worse above 2E10
    ! For huge(0.0) we have 3.4028234663852886E+038 -0.52187652333365853       0.99999251142364332        1.5218690347573018
    !                          value                    gfortran sin             lfortran sin              absolute error
    
    elemental real(dp) function dsin2(x) result(r)
        real(dp), intent(in) :: x
        real(dp) :: y
        integer :: n
        y = modulo(x, 2*pi)
        y = min(y, pi - y)
        y = max(y, -pi - y)
        y = min(y, pi - y)
        r = kernel_dsin2(y)
    end function
    
    ! Accurate on [-pi/2,pi/2] to about 1e-16
    elemental real(dp) function kernel_dsin2(x) result(res)
        real(dp), intent(in) :: x
        real(dp), parameter :: S1 = 0.9999999999999990771_dp
        real(dp), parameter :: S2 = -0.16666666666664811048_dp
        real(dp), parameter :: S3 = 8.333333333226519387e-3_dp
        real(dp), parameter :: S4 = -1.9841269813888534497e-4_dp
        real(dp), parameter :: S5 = 2.7557315514280769795e-6_dp
        real(dp), parameter :: S6 = -2.5051823583393710429e-8_dp
        real(dp), parameter :: S7 = 1.6046585911173017112e-10_dp
        real(dp), parameter :: S8 = -7.3572396558796051923e-13_dp
        real(dp) :: z
        z = x*x
        res = x * (S1+z*(S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8)))))))
    end function
    
    elemental real(dp) function kernel_dcos2(x) result(res)
        real(dp), intent(in) :: x
        real(dp), parameter :: C1 = 0.99999999999999999317_dp
        real(dp), parameter :: C2 = 4.3522024034217346524e-18_dp
        real(dp), parameter :: C3 = -0.49999999999999958516_dp
        real(dp), parameter :: C4 = -8.242872826356848038e-17_dp
        real(dp), parameter :: C5 = 4.166666666666261697e-2_dp
        real(dp), parameter :: C6 = 4.0485005435941782636e-16_dp
        real(dp), parameter :: C7 = -1.3888888888731381616e-3_dp
        real(dp), parameter :: C8 = -8.721570096570797013e-16_dp
        real(dp), parameter :: C9 = 2.4801587270604889267e-5_dp
        real(dp), parameter :: C10 = 9.352687193379247843e-16_dp
        real(dp), parameter :: C11 = -2.7557315787234544468e-7_dp
        real(dp), parameter :: C12 = -5.2320806585871644286e-16_dp
        real(dp), parameter :: C13 = 2.0876532326120694722e-9_dp
        real(dp), parameter :: C14 = 1.4637857803935104813e-16_dp
        real(dp), parameter :: C15 = -1.146215379106821115e-11_dp
        real(dp), parameter :: C16 = -1.6185683697669940221e-17_dp
        real(dp), parameter :: C17 = 4.6012969591571265687e-14_dp
        ! Remez16
        res = C1  + x * (C2  + x * &
            (C3  + x * (C4  + x * &
            (C5  + x * (C6  + x * &
            (C7  + x * (C8  + x * &
            (C9  + x * (C10 + x * &
            (C11 + x * (C12 + x * &
            (C13 + x * (C14 + x * &
            (C15 + x * (C16 + x * C17)))))))))))))))
    end function
    
    real(dp) function dsin3(x) result(r)
        real(dp), intent(in) :: x
        real(dp) :: y
        integer :: n
        if (abs(x) < pi/4) then
            r = kernel_dsin2(x)
        else
            n = rem_pio2(x, y)
            select case (modulo(n, 4))
                case (0)
                    r =  kernel_dsin2(y)
                case (1)
                    r =  kernel_dcos2(y)
                case (2)
                    r = -kernel_dsin2(y)
                case default
                    r = -kernel_dcos2(y)
            end select
        end if
    end function
    
    integer function rem_pio2(x, y) result(n)
        real(dp), intent(in) :: x
        real(dp), intent(out) :: y
        y = modulo(x, pi/2)
        if (y > pi/4) y = y-pi/2
        n = (x-y) / (pi/2)
    end function
    
end module

program main
    use iso_fortran_env, only: sp => real32, dp => real64
    use lfortran_intrinsic_sin
    implicit none
    
    real(dp) :: x
    x = 0.0_dp
    print*, sin(x)
    if (abs(sin(x) - 0.0_dp) > 1e-12) error stop
    x = 1.0_dp
    print*, sin(x)
    if (abs(sin(x) - 0.84147098480789650665_dp) > 1e-12) error stop
    x = 1.57_dp
    print*, sin(x)
    if (abs(sin(x) - 0.999999682931834610503_dp) > 1e-12) error stop

end program