File: modules_02.f90

package info (click to toggle)
lfortran 0.58.0-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 54,512 kB
  • sloc: cpp: 162,179; f90: 68,251; python: 17,476; ansic: 6,278; yacc: 2,334; sh: 1,317; fortran: 892; makefile: 33; javascript: 15
file content (133 lines) | stat: -rw-r--r-- 3,058 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
module random

use types, only: dp
use utils, only: stop_error
implicit none
private
public randn, rand_gamma

interface randn
    module procedure randn_scalar
    module procedure randn_vector
    module procedure randn_matrix
    module procedure randn_vector_n
end interface

interface rand_gamma
    module procedure rand_gamma_scalar
    module procedure rand_gamma_vector
    module procedure rand_gamma_matrix
    module procedure rand_gamma_vector_n
end interface

contains

subroutine randn_scalar(x)
! Returns a psuedorandom scalar drawn from the standard normal distribution.
!
! [1] Marsaglia, G., & Bray, T. A. (1964). A Convenient Method for Generating
!       Normal Variables. SIAM Review, 6(3), 260-264.
real(dp), intent(out) :: x
logical, save :: first = .true.
real(dp), save :: u(2)
real(dp) :: r2
if (first) then
    do
        call random_number(u)
        u = 2*u-1
        r2 = sum(u**2)
        if (r2 < 1 .and. r2 > 0) exit
    end do
    u = u * sqrt(-2*log(r2)/r2)
    x = u(1)
else
    x = u(2)
end if
first = .not. first
end subroutine

subroutine randn_vector_n(n, x)
integer, intent(in) :: n
real(dp), intent(out) :: x(n)
integer :: i
do i = 1, size(x)
    call randn(x(i))
end do
end subroutine

subroutine randn_vector(x)
real(dp), intent(out) :: x(:)
call randn_vector_n(size(x), x)
end subroutine

subroutine randn_matrix(x)
real(dp), intent(out) :: x(:, :)
call randn_vector_n(size(x), x)
end subroutine

subroutine rand_gamma0(a, first, fn_val)
! Returns a psuedorandom scalar drawn from the gamma distribution.
!
! The shape parameter a >= 1.
!
! [1] Marsaglia, G., & Tsang, W. W. (2000). A Simple Method for Generating
! Gamma Variables. ACM Transactions on Mathematical Software (TOMS), 26(3),
! 363-372.
real(dp), intent(in) :: a
logical, intent(in) :: first
real(dp), intent(out) :: fn_val
real(dp), save :: c, d
real(dp) :: U, v, x
if (a < 1) call stop_error("Shape parameter must be >= 1")
if (first) then
    d = a - 1._dp/3
    c = 1/sqrt(9*d)
end if
do
    do
        call randn(x)
        v = (1 + c*x)**3
        if (v > 0) exit
    end do
    call random_number(U)
    ! Note: the number 0.0331 below is exact, see [1].
    if (U < 1 - 0.0331_dp*x**4) then
        fn_val = d*v
        exit
    else if (log(U) < x**2/2 + d*(1 - v + log(v))) then
        fn_val = d*v
        exit
    end if
end do
end subroutine

subroutine rand_gamma_scalar(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x
call rand_gamma0(a, .true., x)
end subroutine

subroutine rand_gamma_vector_n(a, n, x)
real(dp), intent(in) :: a
integer, intent(in) :: n
real(dp), intent(out) :: x(n)
integer :: i
call rand_gamma0(a, .true., x(1))
do i = 2, size(x)
    call rand_gamma0(a, .false., x(i))
end do
end subroutine

subroutine rand_gamma_vector(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x(:)
call rand_gamma_vector_n(a, size(x), x)
end subroutine

subroutine rand_gamma_matrix(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x(:, :)
call rand_gamma_vector_n(a, size(x), x)
end subroutine

end module