1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
<!--startcut ==============================================-->
<!-- *** BEGIN HTML header *** -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML><HEAD>
<title>Exploring parsing and virtual machines with Python LG #52</title>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#0000AF"
ALINK="#FF0000">
<!-- *** END HTML header *** -->
<!-- *** BEGIN navbar *** -->
<A HREF="lg_toc52.html"><IMG ALT="[ Table of Contents ]"
SRC="../gx/indexnew.gif" WIDTH=163 HEIGHT=60 ALIGN=bottom ></A>
<A HREF="../lg_frontpage.html"><IMG ALT="[ Front Page ]"
SRC="../gx/homenew.gif" WIDTH=163 HEIGHT=60 ALIGN=bottom></A>
<A HREF="art.html"><IMG ALT="[ Prev ]" SRC="../gx/back2.gif" WIDTH=41 HEIGHT=60 ALIGN=bottom></A>
<A HREF="../lg_faq.html"><IMG ALT="[ Linux Gazette FAQ ]"
SRC="./../gx/dennis/faq.gif"WIDTH=163 HEIGHT=60 ALIGN=bottom></A>
<A HREF="lg_backpage52.html"><IMG ALT="[ Next ]" SRC="../gx/fwd.gif" WIDTH=41 HEIGHT=60 ALIGN=bottom ></A>
<!-- *** END navbar *** -->
<P>
<A HREF="http://www.linuxgazette.com/cgi-bin/talkback/all.py?site=LG&article=http://www.linuxgazette.com/issue52/pramode.html">
<FONT SIZE="+2"><EM>Talkback:</EM> Discuss this article with peers</FONT></A>
<!--endcut ============================================================-->
<H4>
"Linux Gazette...<I>making Linux just a little more fun!</I>"
</H4>
<P> <HR> <P>
<!--===================================================================-->
<center>
<H1><font color="maroon">Exploring parsing and virtual machines with Python</font></H1>
<H4>By <a href="mailto:iclabs@vsnl.com">Pramode C E</a></H4>
</center>
<P> <HR> <P>
<!-- END header -->
The design of compilers/interpreters is a challenging field - one
which offers a lot of scope for theoretical exploration as well
as hands on coding. Being a Python fan, I tried to implement some
of the ideas which I am learning about compilers/interpreters
in this beautiful language. As I am neither a Python Guru nor
a compiler expert, the implementation may be imperfect. But it
was certainly lots of fun!
<H2> A simple language </H2>
Don't be disappointed when I tell you that we are not going to
discuss the implementation of an Object Oriented, functional
language with automatic garbage collection and the works! The
language I am talking about here is the one which we learn as
kids, the language of arithmetic expressions. For example,
<pre>
1+2*3-4
1/2+3-4/5
.....
</pre>
We will start with a program which will read an expression of
this form and evaluate it directly. We will then modify this program
to generate a data structure called a parse tree which can then
be evaluated by recursive algorithms. The next step is to generate
instructions for a virtual machine using this parse tree. The last
step is to store these virtual machine instructions on disk
and run it with an interpreter when required.
<H2> Context-free grammars </H2>
<p>
Programming languages are often described using a compact and
powerful notation called a Context-free Grammar. The grammar
describes a set of substitutions. Here is a grammar for arithmetic
expressions:
<pre>
E ::= T { ADDOP T }
T ::= F { MULOP F }
F ::= 0 | 1 | 2 | 3 | .....
ADDOP ::= + | -
MULOP ::= * | /
</pre>
Assume that E stands for expression, T stands for term and F
stands for factor. The curly brace denotes 'zero or more repetitions'.
Reading the first production, we would say that "An expression is
a term, followed by zero or more repetitions of the combination of
an adding operator and a term." The third production says that a
factor is either 0 or 1 or 2 or 3 or 4 and so on, ie, the whole
set of positive integers. It takes some time to get used to
esoteric definitions like this, but if we have a basic understanding
of recursive structures, it is not very difficult.
<H2> A simple expression evaluator </H2>
<p>
Here is the source for a simple expression evaluator in Python.
(<A HREF="misc/pramode/listing1.py.txt">text version</A>)
<pre>
#--------------------A simple expression evaluator---------------#
import re, string
Inputbuf = []
# A token is either a number or an operator symbol.
# The main program reads a line from the input and
# stores it in an array called Inputbuf. The function
# gettoken() returns individual tokens from this array.
def gettoken():
global Inputbuf
p = re.search('^\W*[\+\-\*/]|^\W*[0-9]+', Inputbuf)
token = p.string[p.regs[0][0]:p.regs[0][1]]
token = string.strip(token)
if token not in ['+', '-', '*', '/']:
token = int(token)
Inputbuf = Inputbuf[p.regs[0][1]:]
return token
# lookahead() peeks into the input stream and tells you what
# the next input token is
def lookahead():
global Inputbuf
try:
p = re.search('^\W*[\+\-\*/]|^\W*[0-9]+', Inputbuf)
token = p.string[p.regs[0][0]:p.regs[0][1]]
token = string.strip(token)
if token not in ['+', '-', '*', '/']:
token = int(token)
return token
except:
return None
def factor():
return gettoken()
def term():
e1 = factor()
tmp = lookahead()
while (tmp in ['*', '/']):
gettoken()
if (tmp == '*'):
e1 = e1 * factor()
else:
e1 = e1 / factor()
tmp = lookahead()
return e1
def expression():
e1 = term()
tmp = lookahead()
while (tmp in ['+', '-']):
gettoken()
if (tmp == '+'):
e1 = e1 + term()
else:
e1 = e1 - term()
tmp = lookahead()
return e1
def main():
global Inputbuf
Inputbuf = raw_input()
print expression()
if __name__=='__main__':
main()
</pre>
It would be good to trace the execution of the above code for some
simple expressions.
<H2> Producing a parse tree </H2>
<p>
The above program simply evaluates the given infix arithmetic
expression. We are now going to modify it to produce a parse
tree instead. A parse tree for the expression 1+2*3 would
look like this:
<pre>
+
/ \
/ \
1 *
/ \
/ \
2 3
</pre>
Each node of the tree consists of the following fields:
<ol>
<li> 'op' or 'number' depending on whether the node is an
internal node or a leaf node
<li> A link to the 'left child' called 'left'
<li> A link to the 'right child' called 'right'
</ol>
The tree is built from the bottom up. The function 'factor'
simply creates a new tree node with a number in it, initializes
the left and right pointers to NULL, and returns the node. The
function 'expression()' creates a new node with an operator
'+' or '-' as the value of the 'op' field and assigns the left
and right pointers to values obtained by calling 'term()'.
Function 'term()' works in a similar way.
<P> (<A HREF="misc/pramode/listing2.py.txt">text version</A>)
<pre>
#--------------------Produce a parse tree---------------------#
# gettoken() and lookahead() are same as in the first listing
NULL = 0
import re, string
Inputbuf = []
class Tree:
pass
def factor():
newnode = Tree()
newnode.number = gettoken()
newnode.left = newnode.right = 0
return newnode
def term():
left = factor()
tmp = lookahead()
while (tmp in ['*', '/']):
gettoken()
right = factor()
newnode = Tree()
newnode.op = tmp
newnode.left = left
newnode.right = right
left = newnode
tmp = lookahead()
return left
def expression():
left = term()
tmp = lookahead()
while (tmp in ['+', '-']):
gettoken()
right = term()
newnode = Tree()
newnode.op = tmp
newnode.left = left
newnode.right = right
left = newnode
tmp = lookahead()
return left
def treeprint(ptree):
if (ptree):
try:
print ptree.op
except:
print ptree.number
treeprint(ptree.left)
treeprint(ptree.right)
def main():
global Inputbuf
Inputbuf = raw_input()
ptree = expression()
return ptree
if __name__=='__main__':
ptree = main()
treeprint(ptree)
</pre>
<H2> Building a stack machine </H2>
<p>
The parse tree which we have created can be easily evaluated by
writing a recursive function. But we will adopt a different
method. We will generate code for evaluating expressions in the
instruction set of a simple hypothetical machine called a
'stack machine'. The instructions which this machine has are very
simple - push a number on to the stack, add two numbers, multiply
two numbers etc. Thus, evaluation of the expression 1+2*3 yields the
following code:
<pre>
push 1
push 2
push 3
mul
add
</pre>
These instructions are stored in an array. Push, mul, add etc are
functions. The instructions may be directly executed by walking
through the array and executing the functions held by each array
element or they may stored in a disk file (an easy way is to
use the Python pickle module, though it is a waste of space).
Another program may then read this
code into an array and execute it. The code which I have written
works like this: If you run the program without any filename
argument, it reads an expression from the keyboard, generates
code for the virtual machine in an array and executes it by
walking through the array. The code is also stored in a file
called 'code.out'. Now if you run the program with a file name
argument code.out, it loads the instructions from the file
and executes it, without reading from the keyboard.
<P> (<A HREF="misc/pramode/listing3.py.txt">text version</A>)
<pre>
import re, string, sys, pickle
# Functions not included herein should be copied from the previous listings.
NULL = 0
Inputbuf = []
NCODE = 100
NSTACK = 100
Code = []
Stack = [0] * NSTACK
Pc = 0
Stackp = 0
class Tree:
pass
class CodeItem:
pass
def initcode():
global Code
for i in range(0, NCODE):
t = CodeItem()
Code.append(t)
def pushop():
global Stack, Stackp, Code, Pc
Stack[Stackp] = Code[Pc].number
Stackp = Stackp + 1
Pc = Pc + 1
def addop():
global Stack, Stackp, Code, Pc
Stackp = Stackp - 1
right = Stack[Stackp]
Stackp = Stackp - 1
left = Stack[Stackp]
Stack[Stackp] = left + right
Stackp = Stackp + 1
# define subop, mulop and divop here.
def generate(codep, ptree):
try:
# if the field 'number' is not present, the
# following line generates an exception.
n = ptree.number
Code[codep].op = pushop
codep = codep + 1
Code[codep].number = n
codep = codep + 1
return codep
except:
if (ptree.op == '+'):
codep = generate(codep, ptree.left)
codep = generate(codep, ptree.right)
Code[codep].op = addop
codep = codep + 1
return codep
# elif (ptree.op == '-'): We will write the code
# generation actions for '-', '*', '/' here.
def eval(ptree): # Generate the instructions, then execute them
global Pc, Stackp, Code, Stack
Pc = generate(0, ptree)
Code[Pc].op = NULL
Stackp = 0
Pc = 0
while Code[Pc].op != NULL:
tmp = Pc
Pc = Pc + 1
Code[tmp].op()
return Stack[0]
def eval2(): # Directly execute the loaded code
global Pc, Stackp, Code, Stack
Stackp = 0
Pc = 0
while Code[Pc].op != NULL:
tmp = Pc
Pc = Pc + 1
Code[tmp].op()
return Stack[0]
def main():
global Inputbuf, Code
try:
f = open(sys.argv[1])
Code = pickle.load(f)
f.close()
result = eval2()
print 'result is:', result
return result
except:
print 'Not opening code file, reading from k/b'
initcode()
Inputbuf = raw_input()
ptree = expression()
result = eval(ptree)
f = open('code.out', 'w')
pickle.dump(Code, f)
print 'Code dumped in a file called dat'
print 'result is:', result
return result
if __name__=='__main__':
result = main()
</pre>
'generate()' and 'eval()' are the critical functions. 'generate()'
walks through the expression tree creating the virtual machine code
and storing it in an array 'Code'. 'eval()' walks through the array
'Code' executing the instructions, using an array 'Stack' for
holding the partial results.
<H2> Conclusion </H2>
<p>
It is possible to extend the above program to handle variables
and assignment statements, control flow constructs like gotos,
if statements etc. Soon, you would be building a simple Basic-like
language.
<p>
Coming from a C background, Python's lack of certain C constructs
like the ++ operator is a minor irritation. The lack of compile
time type declarations also seems to have some detrimental effects
upon code readability. Also, you will pay dearly for any typo.
If you have a variable 'f' of type 'struct foo' and 'foo' does not
have a field called 'next', an assignment to 'f.next' will generate a
compile time error in C whereas the Python interpreter would gladly
allow the assignment to go through.
<p>
<H2> References </H2>
The standard book on compiler design is 'Principles of Compiler Design' by
Aho A.V and Ullman J.D. The inspiration for this article came from 'The Practice of
Programming', another excellent book by Brian Kernighan and Rob Pike.
The 'generate' and 'eval' functions are Python renderings of code
from this book. 'A Second course in Computer Science with Pascal' by Daniel D. McCracken
presents several algorithms, including an expression evaluator, in a very engaging style.
<!-- *** BEGIN copyright *** -->
<P> <hr> <!-- P -->
<H5 ALIGN=center>
Copyright © 2000, Pramode C E<BR>
Published in Issue 52 of <i>Linux Gazette</i>, April 2000</H5>
<!-- *** END copyright *** -->
<!--startcut ==========================================================-->
<!-- P --> <HR> <!-- P -->
<A HREF="http://www.linuxgazette.com/cgi-bin/talkback/all.py?site=LG&article=http://www.linuxgazette.com/issue52/pramode.html">
<FONT SIZE="+2"><EM>Talkback:</EM> Discuss this article with peers</FONT></A>
<P>
<!-- *** BEGIN navbar *** -->
<A HREF="lg_toc52.html"><IMG ALT="[ Table of Contents ]"
SRC="../gx/indexnew.gif" WIDTH=163 HEIGHT=60 ALIGN=bottom ></A>
<A HREF="../lg_frontpage.html"><IMG ALT="[ Front Page ]"
SRC="../gx/homenew.gif" WIDTH=163 HEIGHT=60 ALIGN=bottom></A>
<A HREF="art.html"><IMG ALT="[ Prev ]" SRC="../gx/back2.gif" WIDTH=41 HEIGHT=60 ALIGN=bottom></A>
<A HREF="../lg_faq.html"><IMG ALT="[ Linux Gazette FAQ ]"
SRC="./../gx/dennis/faq.gif"WIDTH=163 HEIGHT=60 ALIGN=bottom></A>
<A HREF="lg_backpage52.html"><IMG ALT="[ Next ]" SRC="../gx/fwd.gif" WIDTH=41 HEIGHT=60 ALIGN=bottom ></A>
<!-- *** END navbar *** -->
</BODY></HTML>
<!--endcut ============================================================-->
|