File: pramode.html

package info (click to toggle)
lg-issue97 2-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,280 kB
  • ctags: 65
  • sloc: perl: 68; makefile: 34; sh: 34
file content (454 lines) | stat: -rw-r--r-- 11,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

<html>
<head>
<link href="../lg.css" rel="stylesheet" type="text/css" media="screen, projection"  />
<title>A simple Pulse Width Modulation trick with Linux/RTAI LG #97</title>

<style type="text/css" media="screen, projection">
<!--


.articlecontent {
	position:absolute;
	top:143px;
}


-->
</style>


</head>

<body>


<img src="../gx/2003/newlogo-blank-200-gold2.jpg" id="logo" alt="Linux Gazette"/>
<p id="fun">...making Linux just a little more fun!</p>


<div class="content articlecontent">

<div id="previousnexttop">
<A HREF="oregan2.html" >&lt;-- prev</A> | <A HREF="shuveb.html" >next --&gt;</A>
</div>



<h1>A simple Pulse Width Modulation trick with Linux/RTAI</h1>
<p id="by"><b>By <A HREF="../authors/pramode.html">Pramode C.E</A></b></p>

<p>
<p>
In an <a href="../issue95/pramode.html">
earlier article</a>, I had discussed the basics of realtime programming
with <a href="http://aero.polimi.it/projects/rtai/">Linux/RTAI</a>.
This article demonstrates a nice trick which you can do on your 
home machine, provided you are willing to hook up a simple circuit
to your parallel port (and, of course, run an RTAI patched kernel). I
also demonstrate elementary use of:
<ul>
<li>Inter-task messages
<li>Mail boxes
</ul>
<p>
Be careful when you play with PC hardware - don't come looking for
me if you burn up something! 


<h2>The Trick</h2>
<p>

You want to make an LED light up, slowly. It gets brighter,
brighter, brighter.... It should then
go off - again, little by little. This should keep on repeating.
By controlling the current flowing through it, we can control
the brightness of the LED - but trouble is, our PC parallel
port gives us only two voltage levels - low (0V) and high (around
5V). As this can't be varied, we will only be able to bring the LED
on and make it go off - instantaneously - which is not what we
would like to do.

<h2>Pulse Width Modulation</h2>
<p>

Imagine that you are cycling along a road, in a rather
peculiar way. You pedal hard for 3 seconds, then you sit
idle for 7 seconds - again, you pedal hard for 3 seconds
and sit idle for 7 seconds. If you keep on doing this, you
will cover the distance between two points in a certain amount
of time - by dividing the distance by time, you get an `average'
speed. What happens to this average speed if you increase the
amount of time pedalling? It surely goes up, and if you decrease
the  pedalling time, it goes down. In a similar way, instead
of applying a constant DC voltage on the LED, we apply a signal
of a fixed frequency (say 1KHz, period of 1ms). The LED will burn
brightly if out of the total 1ms period, the signal stays high for
say .8ms and low for only .2ms. By varying the duty cycle of the
signal (keeping the frequency fixed), we will be able to deliver
variable levels of power to the circuit, making it brighter and
dimmer. We are now able to do analog control in a purely digital
manner!

<P>
<img alt="[waveforms]" src="misc/pramode/pwm.png" width="247" height="159">
</P>

<h2>The Hardware</h2>
<p>

You won't need anything more than an LED (preferably a bright one)
and a 1K resistor. The resistor and the LED should be connected
in series between pin number 2 (an output pin) and pin number 25
(ground) of the parallel port. The 8 output pins (2 to 9) of the
parallel port can be accessed via IO port 0x378. Writing a 1 to
0x378 will result in only pin number 2 going high; writing 0xff will
result in all pins going high - you write some other pattern and
you can control the logic level at any of the pins.
</p>

<P>
<img alt="[LED schematic]" src="misc/pramode/led.png" width="160" height="78">
</P>

<p>
The resistor is to limit the current flowing through the
circuit to a few milli amps. The trouble is that the LED
will burn only feebly when you limit the current through it.
A solution is to use a transistor as a switch.

<h2>The Software</h2>
<p>

The basic idea is simple - we write a real-time task
which will turn on the LED, sleep for some time, turn
it off, and again sleep for some time. The total 
on plus off time is 1ms. Initially, the on time would be
0 and off time, 1ms. In the next iteration, the on time
would become 1*1microsecond and off time would become
(1ms - on time). In the next iteration, the on time would
be 2*1microsecond, and so on. In the 1000th iteration 
on time would be 1000*1microsecond, ie 1ms and off time would
be (1ms - on time), which would be 0. Once we reach here,
we start bringing down the on time so that it ultimately
becomes 0 and off time becomes 1ms. This process is repeated.
So, in 1 seconds time (each iteration takes 1ms, and
we have 1000 iterations), the LED will go from off to the brightest
possible level and in the next 1 second, it comes down to its
off state slowly.

<p>
Here is the code which implements this idea:

<pre>

#include &lt;linux/kernel.h&gt;
#include &lt;linux/module.h&gt;
#include &lt;rtai.h&gt;
#include &lt;rtai_sched.h&gt;

#define STACK_SIZE 4096

#define MIN_ON_PERIOD 0 
#define TOTAL_PERIOD 1000000 /* 1ms */
#define NSTEPS 1000
#define STEP_PERIOD 1000

#define LPT1 0x378


static RTIME on_time, off_time, total_period;
static RT_TASK my_task;

enum direction {DOWN, UP};

static void pwm_task(int n)
{
	int step = 0;
	static int dir = UP;
	
	while(1) {
		outb(0xff, LPT1);
		rt_sleep(on_time);
		outb(0x0, LPT1);
		rt_sleep(off_time);
		if(step == NSTEPS) {
			dir = !dir;
			step = 0;
		}
		step++;
		if(dir == UP) on_time =  nano2count(step*STEP_PERIOD);
		else if(dir == DOWN) on_time = total_period - nano2count(step*STEP_PERIOD);
		off_time = total_period - on_time;
	}
}

int init_module(void)
{
	RTIME now;
	
	rt_set_oneshot_mode();
	rt_task_init(&amp;my_task, pwm_task, 0, STACK_SIZE, 0, 0, 0);
	start_rt_timer(0);
	
	on_time = nano2count(MIN_ON_PERIOD);
	off_time = nano2count(TOTAL_PERIOD);
	total_period = nano2count(TOTAL_PERIOD);
	
	now = rt_get_time() + total_period;
	rt_task_make_periodic(&amp;my_task, now, total_period);
	
	return 0;
}


void cleanup_module(void)
{
	stop_rt_timer();
	rt_busy_sleep(10000000);
	rt_task_delete(&amp;my_task);
}

</pre>

The pwm_task's code should be easy to understand.
<p>
Because RTAI ensures us that realtime tasks would always 
meet their deadlines, penalizing only non-realtime tasks,
we see that the PWM generation process continues smoothly
even when the system is heavily loaded. The time `step' of
1 microsecond in our code will be difficult for RTAI to 
achieve, but we won't be getting any visual indications
regarding it (unless we use an oscilloscope to watch the
waveform). Also, ours is just a `fun' program!

<h2>Sending Messages</h2>
<p>
Tasks can send messages to each other - a message is a simple integer value. 
Here is a small program which demonstrates message passing:

<pre>

#include &lt;linux/module.h&gt;
#include &lt;rtai.h&gt;
#include &lt;rtai_sched.h&gt;

#define LPT1_BASE 0x378
#define STACK_SIZE 4096
#define TIMERTICKS 1000000000 

static RT_TASK tasks[2];

static void task_sender(int t)
{
	int msg = 0xab;
	RT_TASK *r;
	r = rt_send(&amp;tasks[1], msg);
	rt_printk("sender: r = %x\n", r);
}

static void task_receiver(int t)
{
	int msg;
	RT_TASK *r;

	r = rt_receive(&amp;tasks[0], &amp;msg);
	rt_printk("receiver: msg = %x\n", msg);
	rt_printk("receiver: r = %x\n", r);
}


int init_module(void)
{
	RTIME tick_period, now;

	rt_set_periodic_mode();
	rt_task_init(&amp;tasks[0], task_sender, 0, STACK_SIZE, 0, 0, 0);
	rt_task_init(&amp;tasks[1], task_receiver, 0, STACK_SIZE, 0, 0, 0);

	rt_printk("sender = %x\n", &amp;tasks[0]);
	rt_printk("recevier = %x\n", &amp;tasks[1]);
	tick_period = start_rt_timer(nano2count(TIMERTICKS));
	now = rt_get_time();
	rt_task_make_periodic(&amp;tasks[1], now + tick_period, tick_period);
	rt_task_make_periodic(&amp;tasks[0], now + 2*tick_period, tick_period);
	return 0;
}

void cleanup_module(void)
{
	stop_rt_timer();
	rt_busy_sleep(10000000);
	rt_task_delete(&amp;tasks[0]);
	rt_task_delete(&amp;tasks[1]);
}
 
 </pre>
 The recevier task starts executing at the next timer tick. It immediately
 inovkes rt_receive. The first argument is address of the RT_TASK object
 corresponding to the sender task. Because the sender is not yet active,
 task_receive blocks. At the next timer tick, task_sender becomes active
 and sends the `message' 0xab to task_receiver. The receiver task comes out
 of the block and prints the received message as well as the address of the
 RT_TASK object corresponding to the sender task.

<h2>Using Mailboxes</h2>
<p>
A mailbox is a convenient mechanism using which multiple tasks
can communicate with each other. Let's look at a small program:

<pre>

#include &lt;linux/module.h&gt;
#include &lt;rtai.h&gt;
#include &lt;rtai_sched.h&gt;

#define LPT1_BASE 0x378
#define STACK_SIZE 4096
#define TIMERTICKS 1000000000 

static RT_TASK tasks[2];
static MBX my_mbx;

static void task_sender(int t)
{
	int msg = 0x12cd, r;
	r = rt_mbx_send(&amp;my_mbx, &amp;msg, sizeof(msg));
	rt_printk("sender: r = %d\n", r);
}

static void task_receiver(int t)
{
	int msg, r;
	r = rt_mbx_receive(&amp;my_mbx, &amp;msg, sizeof(msg));
	rt_printk("receiver: msg = %x\n", msg);
	rt_printk("receiver: r = %d\n", r);
}


int init_module(void)
{
	RTIME tick_period, now;

	rt_set_periodic_mode();
	rt_task_init(&amp;tasks[0], task_sender, 0, STACK_SIZE, 0, 0, 0);
	rt_task_init(&amp;tasks[1], task_receiver, 0, STACK_SIZE, 0, 0, 0);

	rt_mbx_init(&amp;my_mbx, 4*sizeof(int));
	tick_period = start_rt_timer(nano2count(TIMERTICKS));
	now = rt_get_time();
	rt_task_make_periodic(&amp;tasks[1], now + tick_period, tick_period);
	rt_task_make_periodic(&amp;tasks[0], now + 2*tick_period, tick_period);
	return 0;
}

void cleanup_module(void)
{
	stop_rt_timer();
	rt_busy_sleep(10000000);
	rt_mbx_delete(&amp;my_mbx);
	rt_task_delete(&amp;tasks[0]);
	rt_task_delete(&amp;tasks[1]);
	
}

</pre>
<p>
A mailbox is represented by a static variable of type MBX. We create a new
mailbox by calling rt_mbx_init. The second argument is the size of the mailbox.
The sender task calls rt_mbx_send and stores a message `msg' of size
`sizeof(msg)' in the mailbox. The receiver task receives the message by
calling rt_mbx_receive. The receiver will block until all the bytes of the
message have been received (or until some error occurs).

<h2>Conclusion</h2>
<p>
I started exploring Linux/RTAI out of curiosity, but I am being tempted to
learn more. I hope my excitement becomes contagious and more readers start
tinkering on their own. Just don't forget to tell us about your experiments!

</p>


<!-- *** BEGIN author bio *** -->
<P>&nbsp;
<P>
<!-- *** BEGIN bio *** -->
<P>
<img ALIGN="LEFT" ALT="[BIO]" SRC="../gx/2002/note.png">
<em>
I am an instructor working for IC Software in Kerala, India. I would have loved
becoming an organic chemist, but I do the second best thing possible, which is
play with Linux and teach programming!
</em>
<br CLEAR="all">
<!-- *** END bio *** -->

<!-- *** END author bio *** -->

<div id="articlefooter">

<p>
Copyright &copy; 2003, Pramode C.E. Copying license 
<a href="http://linuxgazette.net/copying.html">http://linuxgazette.net/copying.html</a>
</p>

<p>
Published in Issue 97 of Linux Gazette, December 2003
</p>

</div>


<div id="previousnextbottom">
<A HREF="oregan2.html" >&lt;-- prev</A> | <A HREF="shuveb.html" >next --&gt;</A>
</div>


</div>






<div id="navigation">

<a href="../index.html">Home</a>
<a href="../faq/index.html">FAQ</a>
<a href="../lg_index.html">Site Map</a>
<a href="../mirrors.html">Mirrors</a>
<a href="../mirrors.html">Translations</a>
<a href="../search.html">Search</a>
<a href="../archives.html">Archives</a>
<a href="../authors/index.html">Authors</a>
<a href="../contact.html">Contact Us</a>

</div>



<div id="breadcrumbs">

<a href="../index.html">Home</a> &gt; 
<a href="index.html">December 2003 (#97)</a> &gt; 
Article

</div>





<img src="../gx/2003/sit3-shine.7-2.gif" id="tux" alt="Tux"/>




</body>
</html>