1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
/*
Copyright (c) 2011, 2012, Simon Howard
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "lha_decoder.h"
#include "bit_stream_reader.c"
// Size of the ring buffer used to hold history:
#define RING_BUFFER_SIZE 4096 /* bytes */
// When this limit is reached, the code tree is reordered.
#define TREE_REORDER_LIMIT 32 * 1024 /* 32 kB */
// Number of codes ('byte' codes + 'copy' codes):
#define NUM_CODES 314
// Number of nodes in the code tree.
#define NUM_TREE_NODES (NUM_CODES * 2 - 1)
// Number of possible offsets:
#define NUM_OFFSETS 64
// Minimum length of the offset top bits:
#define MIN_OFFSET_LENGTH 3 /* bits */
// Threshold for copying. The first copy code starts from here.
#define COPY_THRESHOLD 3 /* bytes */
// Required size of the output buffer. At most, a single call to read()
// might result in a copy of the entire ring buffer.
#define OUTPUT_BUFFER_SIZE RING_BUFFER_SIZE
typedef struct {
// If true, this node is a leaf node.
unsigned int leaf :1;
// If this is a leaf node, child_index is the code represented by
// this node. Otherwise, nodes[child_index] and nodes[child_index-1]
// are the children of this node.
unsigned int child_index :15;
// Index of the parent node of this node.
uint16_t parent;
// Frequency count for this node - number of times that it has
// received a hit.
uint16_t freq;
// Group that this node belongs to.
uint16_t group;
} Node;
typedef struct {
// Input bit stream.
BitStreamReader bit_stream_reader;
// Ring buffer of past data. Used for position-based copies.
uint8_t ringbuf[RING_BUFFER_SIZE];
unsigned int ringbuf_pos;
// Array of tree nodes. nodes[0] is the root node. The array
// is maintained in order by frequency.
Node nodes[NUM_TREE_NODES];
// Indices of leaf nodes of the tree (map from code to leaf
// node index)
uint16_t leaf_nodes[NUM_CODES];
// Groups list. Every node belongs to a group. All nodes within
// a group have the same frequency. There can be at most
// NUM_TREE_NODES groups (one for each node). num_groups is used
// to allocate and deallocate groups as needed.
uint16_t groups[NUM_TREE_NODES];
unsigned int num_groups;
// Index of the "leader" of a group within the nodes[] array.
// The leader is the left-most node within a span of nodes with
// the same frequency.
uint16_t group_leader[NUM_TREE_NODES];
// Offset lookup table. Maps from a byte value (sequence of next
// 8 bits from input stream) to an offset value.
uint8_t offset_lookup[256];
// Length of offsets, in bits.
uint8_t offset_lengths[NUM_OFFSETS];
} LHALH1Decoder;
// Frequency distribution used to calculate the offset codes.
static const unsigned int offset_fdist[] = {
1, // 3 bits
3, // 4 bits
8, // 5 bits
12, // 6 bits
24, // 7 bits
16, // 8 bits
};
// Allocate a group from the free groups array.
static uint16_t alloc_group(LHALH1Decoder *decoder)
{
uint16_t result;
result = decoder->groups[decoder->num_groups];
++decoder->num_groups;
return result;
}
// Free a group that is no longer in use.
static void free_group(LHALH1Decoder *decoder, uint16_t group)
{
--decoder->num_groups;
decoder->groups[decoder->num_groups] = group;
}
// Initialize groups array.
static void init_groups(LHALH1Decoder *decoder)
{
unsigned int i;
for (i = 0; i < NUM_TREE_NODES; ++i) {
decoder->groups[i] = (uint16_t) i;
}
decoder->num_groups = 0;
}
// Initialize the tree with its basic initial configuration.
static void init_tree(LHALH1Decoder *decoder)
{
unsigned int i, child;
int node_index;
uint16_t leaf_group;
Node *node;
// Leaf nodes are placed at the end of the table. Start by
// initializing these, and working backwards.
node_index = NUM_TREE_NODES - 1;
leaf_group = alloc_group(decoder);
for (i = 0; i < NUM_CODES; ++i) {
node = &decoder->nodes[node_index];
node->leaf = 1;
node->child_index = (unsigned short) i;
node->freq = 1;
node->group = leaf_group;
decoder->group_leader[leaf_group] = (uint16_t) node_index;
decoder->leaf_nodes[i] = (uint16_t) node_index;
--node_index;
}
// Now build up the intermediate nodes, up to the root. Each
// node gets two nodes as children.
child = NUM_TREE_NODES - 1;
while (node_index >= 0) {
node = &decoder->nodes[node_index];
node->leaf = 0;
// Set child pointer and update the parent pointers of the
// children.
node->child_index = child;
decoder->nodes[child].parent = (uint16_t) node_index;
decoder->nodes[child - 1].parent = (uint16_t) node_index;
// The node's frequency is equal to the sum of the frequencies
// of its children.
node->freq = (uint16_t) (decoder->nodes[child].freq
+ decoder->nodes[child - 1].freq);
// Is the frequency the same as the last node we processed?
// if so, we are in the same group. If not, we must
// allocate a new group. Either way, this node is now the
// leader of its group.
if (node->freq == decoder->nodes[node_index + 1].freq) {
node->group = decoder->nodes[node_index + 1].group;
} else {
node->group = alloc_group(decoder);
}
decoder->group_leader[node->group] = (uint16_t) node_index;
// Process next node.
--node_index;
child -= 2;
}
}
// Fill in a range of values in the offset_lookup table, which have
// the bits from 'code' as the high bits, and the low bits can be
// any values in the range from 'mask'. Set these values to point
// to 'offset'.
static void fill_offset_range(LHALH1Decoder *decoder, uint8_t code,
unsigned int mask, unsigned int offset)
{
unsigned int i;
// Set offset lookup table to map from all possible input values
// that fit within the mask to the target offset.
for (i = 0; (i & ~mask) == 0; ++i) {
decoder->offset_lookup[code | i] = (uint8_t) offset;
}
}
// Calculate the values for the offset_lookup and offset_lengths
// tables.
static void init_offset_table(LHALH1Decoder *decoder)
{
unsigned int i, j, len;
uint8_t code, iterbit, offset;
code = 0;
offset = 0;
// Iterate through each entry in the frequency distribution table,
// filling in codes in the lookup table as we go.
for (i = 0; i < sizeof(offset_fdist) / sizeof(*offset_fdist); ++i) {
// offset_fdist[0] is the number of codes of length
// MIN_OFFSET_LENGTH bits, increasing as we go. As the
// code increases in length, we must iterate progressively
// lower bits in the code (moving right - extending the
// code to be 1 bit longer).
len = i + MIN_OFFSET_LENGTH;
iterbit = (uint8_t) (1 << (8 - len));
for (j = 0; j < offset_fdist[i]; ++j) {
// Store lookup values for this offset in the
// lookup table, and save the code length.
// (iterbit - 1) turns into a mask for the lower
// bits that are not part of the code.
fill_offset_range(decoder, code,
(uint8_t) (iterbit - 1), offset);
decoder->offset_lengths[offset] = (uint8_t) len;
// Iterate to next code.
code = (uint8_t) (code + iterbit);
++offset;
}
}
}
// Initialize the history ring buffer.
static void init_ring_buffer(LHALH1Decoder *decoder)
{
memset(decoder->ringbuf, ' ', RING_BUFFER_SIZE);
decoder->ringbuf_pos = 0;
}
static int lha_lh1_init(void *data, LHADecoderCallback callback,
void *callback_data)
{
LHALH1Decoder *decoder = data;
// Initialize input stream reader.
bit_stream_reader_init(&decoder->bit_stream_reader,
callback, callback_data);
// Initialize data structures.
init_groups(decoder);
init_tree(decoder);
init_offset_table(decoder);
init_ring_buffer(decoder);
return 1;
}
// Make the given node the leader of its group: swap it with the current
// leader so that it is in the left-most position. Returns the new index
// of the node.
static uint16_t make_group_leader(LHALH1Decoder *decoder,
uint16_t node_index)
{
Node *node, *leader;
uint16_t group;
uint16_t leader_index;
unsigned int tmp;
group = decoder->nodes[node_index].group;
leader_index = decoder->group_leader[group];
// Already the leader? If so, there is nothing to do.
if (leader_index == node_index) {
return node_index;
}
node = &decoder->nodes[node_index];
leader = &decoder->nodes[leader_index];
// Swap leaf and child indices in the two nodes:
tmp = leader->leaf;
leader->leaf = node->leaf;
node->leaf = tmp;
tmp = leader->child_index;
leader->child_index = node->child_index;
node->child_index = tmp;
if (node->leaf) {
decoder->leaf_nodes[node->child_index] = node_index;
} else {
decoder->nodes[node->child_index].parent = node_index;
decoder->nodes[node->child_index - 1].parent = node_index;
}
if (leader->leaf) {
decoder->leaf_nodes[leader->child_index] = leader_index;
} else {
decoder->nodes[leader->child_index].parent = leader_index;
decoder->nodes[leader->child_index - 1].parent = leader_index;
}
return leader_index;
}
// Increase the frequency count for a node, rearranging groups as
// appropriate.
static void increment_node_freq(LHALH1Decoder *decoder, uint16_t node_index)
{
Node *node, *other;
node = &decoder->nodes[node_index];
other = &decoder->nodes[node_index - 1];
++node->freq;
// If the node is part of a group containing other nodes, it
// must leave the group.
if (node_index < NUM_TREE_NODES - 1
&& node->group == decoder->nodes[node_index + 1].group) {
// Next node in the group now becomes the leader.
++decoder->group_leader[node->group];
// The node must now either join the group to its
// left, or start a new group.
if (node->freq == other->freq) {
node->group = other->group;
} else {
node->group = alloc_group(decoder);
decoder->group_leader[node->group] = node_index;
}
} else {
// The node is in a group of its own (single-node
// group). It might need to join the group of the
// node on its left if it has the same frequency.
if (node->freq == other->freq) {
free_group(decoder, node->group);
node->group = other->group;
}
}
}
// Reconstruct the code huffman tree to be more evenly distributed.
// Invoked periodically as data is processed.
static void reconstruct_tree(LHALH1Decoder *decoder)
{
Node *leaf;
unsigned int child;
unsigned int freq;
unsigned int group;
int i;
// Gather all leaf nodes at the start of the table.
leaf = decoder->nodes;
for (i = 0; i < NUM_TREE_NODES; ++i) {
if (decoder->nodes[i].leaf) {
leaf->leaf = 1;
leaf->child_index = decoder->nodes[i].child_index;
// Frequency of the nodes in the new tree is halved,
// this acts as a running average each time the
// tree is reconstructed.
leaf->freq = (uint16_t) (decoder->nodes[i].freq + 1) / 2;
++leaf;
}
}
// The leaf nodes are now all at the start of the table. Now
// reconstruct the tree, starting from the end of the table and
// working backwards, inserting branch nodes between the leaf
// nodes. Each branch node inherits the sum of the frequencies
// of its children, and must be placed to maintain the ordering
// within the table by decreasing frequency.
leaf = &decoder->nodes[NUM_CODES - 1];
child = NUM_TREE_NODES - 1;
i = NUM_TREE_NODES - 1;
while (i >= 0) {
// Before we can add a new branch node, we need at least
// two nodes to use as children. If we don't have this
// then we need to copy some from the leaves.
while ((int) child - i < 2) {
decoder->nodes[i] = *leaf;
decoder->leaf_nodes[leaf->child_index] = (uint16_t) i;
--i;
--leaf;
}
// Now that we have at least two nodes to take as children
// of the new branch node, we can calculate the branch
// node's frequency.
freq = (unsigned int) (decoder->nodes[child].freq
+ decoder->nodes[child - 1].freq);
// Now copy more leaf nodes until the correct place to
// insert the new branch node presents itself.
while (leaf >= decoder->nodes && freq >= leaf->freq) {
decoder->nodes[i] = *leaf;
decoder->leaf_nodes[leaf->child_index] = (uint16_t) i;
--i;
--leaf;
}
// The new branch node can now be inserted.
decoder->nodes[i].leaf = 0;
decoder->nodes[i].freq = (uint16_t) freq;
decoder->nodes[i].child_index = (uint16_t) child;
decoder->nodes[child].parent = (uint16_t) i;
decoder->nodes[child - 1].parent = (uint16_t) i;
--i;
// Process the next pair of children.
child -= 2;
}
// Reconstruct the group data. Start by resetting group data.
init_groups(decoder);
// Assign a group to the first node.
group = alloc_group(decoder);
decoder->nodes[0].group = (uint16_t) group;
decoder->group_leader[group] = 0;
// Assign a group number to each node, nodes having the same
// group if the have the same frequency, and allocating new
// groups when a new frequency is found.
for (i = 1; i < NUM_TREE_NODES; ++i) {
if (decoder->nodes[i].freq == decoder->nodes[i - 1].freq) {
decoder->nodes[i].group = decoder->nodes[i - 1].group;
} else {
group = alloc_group(decoder);
decoder->nodes[i].group = (uint16_t) group;
// First node with a particular frequency is leader.
decoder->group_leader[group] = (uint16_t) i;
}
}
}
// Increment the counter for the specific code, reordering the tree as
// necessary.
static void increment_for_code(LHALH1Decoder *decoder, uint16_t code)
{
uint16_t node_index;
// When the limit is reached, we must reorder the code tree
// to better match the code frequencies:
if (decoder->nodes[0].freq >= TREE_REORDER_LIMIT) {
reconstruct_tree(decoder);
}
++decoder->nodes[0].freq;
// Dynamically adjust the tree. Start from the leaf node of
// the tree and walk back up, rearranging nodes to the root.
node_index = decoder->leaf_nodes[code];
while (node_index != 0) {
// Shift the node to the left side of its group,
// and bump the frequency count.
node_index = make_group_leader(decoder, node_index);
increment_node_freq(decoder, node_index);
// Iterate up to the parent node.
node_index = decoder->nodes[node_index].parent;
}
}
// Read a code from the input stream.
static int read_code(LHALH1Decoder *decoder, uint16_t *result)
{
unsigned int node_index;
int bit;
// Start from the root node, and traverse down until a leaf is
// reached.
node_index = 0;
//printf("<root ");
while (!decoder->nodes[node_index].leaf) {
bit = read_bit(&decoder->bit_stream_reader);
if (bit < 0) {
return 0;
}
//printf("<%i>", bit);
// Choose one of the two children depending on the
// bit that was read.
node_index = decoder->nodes[node_index].child_index
- (unsigned int) bit;
}
*result = decoder->nodes[node_index].child_index;
//printf(" -> %i!>\n", *result);
increment_for_code(decoder, *result);
return 1;
}
// Read an offset code from the input stream.
static int read_offset(LHALH1Decoder *decoder, unsigned int *result)
{
unsigned int offset;
int future, offset2;
// The offset can be up to 8 bits long, but is likely not
// that long. Use the lookup table to find the offset
// and its length.
future = peek_bits(&decoder->bit_stream_reader, 8);
if (future < 0) {
return 0;
}
offset = decoder->offset_lookup[future];
// Skip past the offset bits and also read the following
// lower-order bits.
read_bits(&decoder->bit_stream_reader,
decoder->offset_lengths[offset]);
offset2 = read_bits(&decoder->bit_stream_reader, 6);
if (offset2 < 0) {
return 0;
}
*result = (offset << 6) | (unsigned int) offset2;
return 1;
}
static void output_byte(LHALH1Decoder *decoder, uint8_t *buf,
size_t *buf_len, uint8_t b)
{
buf[*buf_len] = b;
++*buf_len;
decoder->ringbuf[decoder->ringbuf_pos] = b;
decoder->ringbuf_pos = (decoder->ringbuf_pos + 1) % RING_BUFFER_SIZE;
}
static size_t lha_lh1_read(void *data, uint8_t *buf)
{
LHALH1Decoder *decoder = data;
size_t result;
uint16_t code;
result = 0;
// Read the next code from the input stream.
if (!read_code(decoder, &code)) {
return 0;
}
// The code either indicates a single byte to be output, or
// it indicates that a block should be copied from the ring
// buffer as it is a repeat of a sequence earlier in the
// stream.
if (code < 0x100) {
output_byte(decoder, buf, &result, (uint8_t) code);
} else {
unsigned int count, start, i, pos, offset;
// Read the offset into the history at which to start
// copying.
if (!read_offset(decoder, &offset)) {
return 0;
}
count = code - 0x100U + COPY_THRESHOLD;
start = decoder->ringbuf_pos - offset + RING_BUFFER_SIZE - 1;
// Copy from history into output buffer:
for (i = 0; i < count; ++i) {
pos = (start + i) % RING_BUFFER_SIZE;
output_byte(decoder, buf, &result,
decoder->ringbuf[pos]);
}
}
return result;
}
LHADecoderType lha_lh1_decoder = {
lha_lh1_init,
NULL,
lha_lh1_read,
sizeof(LHALH1Decoder),
OUTPUT_BUFFER_SIZE,
RING_BUFFER_SIZE
};
|