1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
/*
Copyright (c) 2011, 2012, Simon Howard
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// Decoder for -pm1- compressed files.
//
// This was difficult to put together. I can't find any versions of
// PMarc that will generate -pm1- encoded files (only -pm2-); however,
// the extraction tool, PMext, will extract them. I have therefore been
// able to reverse engineer the format and write a decoder. I am
// indebted to Alwin Henseler for publishing the Z80 assembly source to
// his UNPMA10 tool, which was apparently decompiled from the original
// PMarc and includes the -pm1- decoding code.
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "lha_decoder.h"
#include "bit_stream_reader.c"
#include "pma_common.c"
// Size of the ring buffer used to hold the history.
#define RING_BUFFER_SIZE 16384
// Maximum length of a command representing a block of bytes:
#define MAX_BYTE_BLOCK_LEN 216
// Maximum number of bytes that can be copied by a single copy command.
#define MAX_COPY_BLOCK_LEN 244
// Output buffer length. A single call to lha_pm1_read can perform one
// byte block output followed by a copy command.
#define OUTPUT_BUFFER_SIZE (MAX_BYTE_BLOCK_LEN + MAX_COPY_BLOCK_LEN)
typedef struct {
BitStreamReader bit_stream_reader;
// Position in output stream, in bytes.
unsigned int output_stream_pos;
// Pointer to the entry in byte_decode_table used to decode
// byte value indices.
const uint8_t *byte_decode_tree;
// History ring buffer.
uint8_t ringbuf[RING_BUFFER_SIZE];
unsigned int ringbuf_pos;
// History linked list, for adaptively encoding byte values.
HistoryLinkedList history_list;
// Callback to read more compressed data from the input (see
// read_callback_wrapper below).
LHADecoderCallback callback;
void *callback_data;
} LHAPM1Decoder;
// Table used to decode distance into history buffer to copy data.
static const VariableLengthTable copy_ranges[] = {
{ 0, 6 }, // 0 + (1 << 6) = 64
{ 64, 8 }, // 64 + (1 << 8) = 320
{ 0, 6 }, // 0 + (1 << 6) = 64
{ 64, 9 }, // 64 + (1 << 9) = 576
{ 576, 11 }, // 576 + (1 << 11) = 2624
{ 2624, 13 }, // 2624 + (1 << 13) = 10816
// The above table entries are used after a certain number of
// bytes have been decoded.
// Early in the stream, some of the copy ranges are more limited
// in their range, so that fewer bits are needed. The above
// table entries are redirected to these entries instead.
// Table entry #3 (64):
{ 64, 8 }, // < 320 bytes
// Table entry #4 (576):
{ 576, 8 }, // < 832 bytes
{ 576, 9 }, // < 1088 bytes
{ 576, 10 }, // < 1600 bytes
// Table entry #5 (2624):
{ 2624, 8 }, // < 2880 bytes
{ 2624, 9 }, // < 3136 bytes
{ 2624, 10 }, // < 3648 bytes
{ 2624, 11 }, // < 4672 bytes
{ 2624, 12 }, // < 6720 bytes
};
// Table used to decode byte values.
static const VariableLengthTable byte_ranges[] = {
{ 0, 4 }, // 0 + (1 << 4) = 16
{ 16, 4 }, // 16 + (1 << 4) = 32
{ 32, 5 }, // 32 + (1 << 5) = 64
{ 64, 6 }, // 64 + (1 << 6) = 128
{ 128, 6 }, // 128 + (1 << 6) = 191
{ 192, 6 }, // 192 + (1 << 6) = 255
};
// This table is a list of trees to decode indices into byte_ranges.
// Each line is actually a mini binary tree, starting with the first
// byte as the root node. Each nybble of the byte is one of the two
// branches: either a leaf value (a-f) or an offset to the child node.
// Expanded representation is shown in comments below.
static const uint8_t byte_decode_trees[][5] = {
{ 0x12, 0x2d, 0xef, 0x1c, 0xab }, // ((((a b) c) d) (e f))
{ 0x12, 0x23, 0xde, 0xab, 0xcf }, // (((a b) (c f)) (d e))
{ 0x12, 0x2c, 0xd2, 0xab, 0xef }, // (((a b) c) (d (e f)))
{ 0x12, 0xa2, 0xd2, 0xbc, 0xef }, // ((a (b c)) (d (e f)))
{ 0x12, 0xa2, 0xc2, 0xbd, 0xef }, // ((a (b d)) (c (e f)))
{ 0x12, 0xa2, 0xcd, 0xb1, 0xef }, // ((a (b (e f))) (c d))
{ 0x12, 0xab, 0x12, 0xcd, 0xef }, // ((a b) ((c d) (e f)))
{ 0x12, 0xab, 0x1d, 0xc1, 0xef }, // ((a b) ((c (e f)) d))
{ 0x12, 0xab, 0xc1, 0xd1, 0xef }, // ((a b) (c (d (e f))))
{ 0xa1, 0x12, 0x2c, 0xde, 0xbf }, // (a (((b f) c) (d e)))
{ 0xa1, 0x1d, 0x1c, 0xb1, 0xef }, // (a (((b (e f)) c) d))
{ 0xa1, 0x12, 0x2d, 0xef, 0xbc }, // (a (((b c) d) (e f)))
{ 0xa1, 0x12, 0xb2, 0xde, 0xcf }, // (a ((b (c f)) (d e)))
{ 0xa1, 0x12, 0xbc, 0xd1, 0xef }, // (a ((b c) (d (e f))))
{ 0xa1, 0x1c, 0xb1, 0xd1, 0xef }, // (a ((b (d (e f))) c))
{ 0xa1, 0xb1, 0x12, 0xcd, 0xef }, // (a (b ((c d) (e f))))
{ 0xa1, 0xb1, 0xc1, 0xd1, 0xef }, // (a (b (c (d (e f)))))
{ 0x12, 0x1c, 0xde, 0xab }, // (((d e) c) (d e)) <- BROKEN!
{ 0x12, 0xa2, 0xcd, 0xbe }, // ((a (b e)) (c d))
{ 0x12, 0xab, 0xc1, 0xde }, // ((a b) (c (d e)))
{ 0xa1, 0x1d, 0x1c, 0xbe }, // (a (((b e) c) d))
{ 0xa1, 0x12, 0xbc, 0xde }, // (a ((b c) (d e)))
{ 0xa1, 0x1c, 0xb1, 0xde }, // (a ((b (d e)) c))
{ 0xa1, 0xb1, 0xc1, 0xde }, // (a (b (c (d e))))
{ 0x1d, 0x1c, 0xab }, // (((a b) c) d)
{ 0x1c, 0xa1, 0xbd }, // ((a (b d)) c)
{ 0x12, 0xab, 0xcd }, // ((a b) (c d))
{ 0xa1, 0x1c, 0xbd }, // (a ((b d) c))
{ 0xa1, 0xb1, 0xcd }, // (a (b (c d)))
{ 0xa1, 0xbc }, // (a (b c))
{ 0xab }, // (a b)
{ 0x00 }, // -- special entry: 0, no tree
};
// Wrapper function invoked to read more data from the input. This mostly just
// calls the real function that does the read. However, when the end of file
// is reached, instead of returning zero, the buffer is filled with zero bytes
// instead. There seem to be archive files that actually depend on this
// ability to read "beyond" the length of the compressed data.
static size_t read_callback_wrapper(void *buf, size_t buf_len, void *user_data)
{
LHAPM1Decoder *decoder = user_data;
size_t result;
result = decoder->callback(buf, buf_len, decoder->callback_data);
if (result == 0) {
memset(buf, 0, buf_len);
result = buf_len;
}
return result;
}
static int lha_pm1_init(void *data, LHADecoderCallback callback,
void *callback_data)
{
LHAPM1Decoder *decoder = data;
memset(decoder, 0, sizeof(LHAPM1Decoder));
// Unlike other decoders, the bitstream code must call the wrapper
// function above to read data.
decoder->callback = callback;
decoder->callback_data = callback_data;
bit_stream_reader_init(&decoder->bit_stream_reader,
read_callback_wrapper, decoder);
decoder->output_stream_pos = 0;
decoder->byte_decode_tree = NULL;
decoder->ringbuf_pos = 0;
init_history_list(&decoder->history_list);
return 1;
}
// Read the 5-bit header from the start of the input stream. This
// specifies the table entry to use for byte decodes.
static int read_start_header(LHAPM1Decoder *decoder)
{
int index;
index = read_bits(&decoder->bit_stream_reader, 5);
if (index < 0) {
return 0;
}
decoder->byte_decode_tree = byte_decode_trees[index];
return 1;
}
// Function called when a new byte is outputted, to update the
// appropriate data structures.
static void outputted_byte(LHAPM1Decoder *decoder, uint8_t b)
{
// Add to history ring buffer.
decoder->ringbuf[decoder->ringbuf_pos] = b;
decoder->ringbuf_pos
= (decoder->ringbuf_pos + 1) % RING_BUFFER_SIZE;
// Other updates: history linked list, output stream position:
update_history_list(&decoder->history_list, b);
++decoder->output_stream_pos;
}
// Decode a count of the number of bytes to copy in a copy command.
// Returns -1 for failure.
static int read_copy_byte_count(LHAPM1Decoder *decoder)
{
int x;
// This is a form of static huffman encoding that uses less bits
// to encode short copy amounts (again).
// Value in the range 3..5?
// Length values start at 3: if it was 2, a different copy
// range would have been used and this function would not
// have been called.
x = read_bits(&decoder->bit_stream_reader, 2);
if (x < 0) {
return -1;
} else if (x < 3) {
return x + 3;
}
// Value in range 6..10?
x = read_bits(&decoder->bit_stream_reader, 3);
if (x < 0) {
return -1;
} else if (x < 5) {
return x + 6;
}
// Value in range 11..14?
else if (x == 5) {
x = read_bits(&decoder->bit_stream_reader, 2);
if (x < 0) {
return -1;
} else {
return x + 11;
}
}
// Value in range 15..22?
else if (x == 6) {
x = read_bits(&decoder->bit_stream_reader, 3);
if (x < 0) {
return -1;
} else {
return x + 15;
}
}
// else x == 7...
x = read_bits(&decoder->bit_stream_reader, 6);
if (x < 0) {
return -1;
} else if (x < 62) {
return x + 23;
}
// Value in range 85..116?
else if (x == 62) {
x = read_bits(&decoder->bit_stream_reader, 5);
if (x < 0) {
return -1;
} else {
return x + 85;
}
}
// Value in range 117..244?
else { // a = 63
x = read_bits(&decoder->bit_stream_reader, 7);
if (x < 0) {
return -1;
} else {
return x + 117;
}
}
}
// Read a single bit from the input stream, but only once the specified
// point is reached in the output stream. Before that point is reached,
// return the value of 'def' instead. Returns -1 for error.
static int read_bit_after_threshold(LHAPM1Decoder *decoder,
unsigned int threshold,
int def)
{
if (decoder->output_stream_pos >= threshold) {
return read_bit(&decoder->bit_stream_reader);
} else {
return def;
}
}
// Read the range index for the copy type used when performing a copy command.
static int read_copy_type_range(LHAPM1Decoder *decoder)
{
int x;
// This is another static huffman tree, but the path grows as
// more data is decoded. The progression is as follows:
// 1. Initially, only '0' and '2' can be returned.
// 2. After 64 bytes, '1' and '3' can be returned as well.
// 3. After 576 bytes, '4' can be returned.
// 4. After 2624 bytes, '5' can be returned.
x = read_bit(&decoder->bit_stream_reader);
if (x < 0) {
return -1;
} else if (x == 0) {
x = read_bit_after_threshold(decoder, 576, 0);
if (x < 0) {
return -1;
} else if (x != 0) {
return 4;
} else {
// Return either 0 or 1.
return read_bit_after_threshold(decoder, 64, 0);
}
} else {
x = read_bit_after_threshold(decoder, 64, 1);
if (x < 0) {
return -1;
} else if (x == 0) {
return 3;
}
x = read_bit_after_threshold(decoder, 2624, 1);
if (x < 0) {
return -1;
} else if (x != 0) {
return 2;
} else {
return 5;
}
}
}
// Read a copy command from the input stream and copy from history.
// Returns 0 for failure.
static size_t read_copy_command(LHAPM1Decoder *decoder, uint8_t *buf)
{
int range_index;
int history_distance;
int copy_index, i;
int count;
range_index = read_copy_type_range(decoder);
if (range_index < 0) {
return 0;
}
// The first two entries in the copy_ranges table are used as
// a shorthand to copy two bytes. Otherwise, decode the number
// of bytes to copy.
if (range_index < 2) {
count = 2;
} else {
count = read_copy_byte_count(decoder);
if (count < 0) {
return 0;
}
}
// The 'range_index' variable is an index into the copy_ranges
// array. As a special-case hack, early in the output stream
// some history ranges are inaccessible, so fewer bits can be
// used. Redirect range_index to special entries to do this.
if (range_index == 3) {
if (decoder->output_stream_pos < 320) {
range_index = 6;
}
} else if (range_index == 4) {
if (decoder->output_stream_pos < 832) {
range_index = 7;
} else if (decoder->output_stream_pos < 1088) {
range_index = 8;
} else if (decoder->output_stream_pos < 1600) {
range_index = 9;
}
} else if (range_index == 5) {
if (decoder->output_stream_pos < 2880) {
range_index = 10;
} else if (decoder->output_stream_pos < 3136) {
range_index = 11;
} else if (decoder->output_stream_pos < 3648) {
range_index = 12;
} else if (decoder->output_stream_pos < 4672) {
range_index = 13;
} else if (decoder->output_stream_pos < 6720) {
range_index = 14;
}
}
// Calculate the number of bytes back into the history buffer
// to read.
history_distance = decode_variable_length(&decoder->bit_stream_reader,
copy_ranges, range_index);
if (history_distance < 0
|| (unsigned) history_distance >= decoder->output_stream_pos) {
return 0;
}
// Copy from the ring buffer.
copy_index = (decoder->ringbuf_pos + RING_BUFFER_SIZE
- history_distance - 1) % RING_BUFFER_SIZE;
for (i = 0; i < count; ++i) {
buf[i] = decoder->ringbuf[copy_index];
outputted_byte(decoder, decoder->ringbuf[copy_index]);
copy_index = (copy_index + 1) % RING_BUFFER_SIZE;
}
return count;
}
// Read the index into the byte decode table, using the byte_decode_tree
// set at the start of the stream. Returns -1 for failure.
static int read_byte_decode_index(LHAPM1Decoder *decoder)
{
const uint8_t *ptr;
unsigned int child;
int bit;
ptr = decoder->byte_decode_tree;
if (ptr[0] == 0) {
return 0;
}
// Walk down the tree, reading a bit at each node to determine
// which path to take.
for (;;) {
bit = read_bit(&decoder->bit_stream_reader);
if (bit < 0) {
return -1;
} else if (bit == 0) {
child = (*ptr >> 4) & 0x0f;
} else {
child = *ptr & 0x0f;
}
// Reached a leaf node?
if (child >= 10) {
return child - 10;
}
ptr += child;
}
}
// Read a single byte value from the input stream.
// Returns -1 for failure.
static int read_byte(LHAPM1Decoder *decoder)
{
int index;
int count;
// Read the index into the byte_ranges table to use.
index = read_byte_decode_index(decoder);
if (index < 0) {
return -1;
}
// Decode value using byte_ranges table. This is actually
// a distance to walk along the history linked list - it
// is static huffman encoding, so that recently used byte
// values use fewer bits.
count = decode_variable_length(&decoder->bit_stream_reader,
byte_ranges, index);
if (count < 0) {
return -1;
}
// Walk through the history linked list to get the actual
// value.
return find_in_history_list(&decoder->history_list, count);
}
// Read the length of a block of bytes.
static int read_byte_block_count(BitStreamReader *reader)
{
int x;
// This is a form of static huffman coding, where smaller
// lengths are encoded using shorter bit sequences.
// Value in the range 1..3?
x = read_bits(reader, 2);
if (x < 0) {
return 0;
} else if (x < 3) {
return x + 1;
}
// Value in the range 4..10?
x = read_bits(reader, 3);
if (x < 0) {
return 0;
} else if (x < 7) {
return x + 4;
}
// Value in the range 11..25?
x = read_bits(reader, 4);
if (x < 0) {
return 0;
} else if (x < 14) {
return x + 11;
} else if (x == 14) {
// Value in the range 25-88:
x = read_bits(reader, 6);
if (x < 0) {
return 0;
} else {
return x + 25;
}
} else { // x = 15
// Value in the range 89-216:
x = read_bits(reader, 7);
if (x < 0) {
return 0;
} else {
return x + 89;
}
}
}
// Read a block of bytes from the input stream.
// Returns 0 for failure.
static size_t read_byte_block(LHAPM1Decoder *decoder, uint8_t *buf)
{
size_t result, result2;
int byteval;
int block_len;
int i;
// How many bytes to decode?
block_len = read_byte_block_count(&decoder->bit_stream_reader);
if (block_len == 0) {
return 0;
}
// Decode the byte values and add them to the output buffer.
for (i = 0; i < block_len; ++i) {
byteval = read_byte(decoder);
if (byteval < 0) {
return 0;
}
buf[i] = byteval;
outputted_byte(decoder, byteval);
}
result = (size_t) block_len;
// Because this is a block of bytes, it can be assumed that the
// block ended for a copy command. The one exception is that if
// the maximum block length was reached, the block may have
// ended just because it could not be any larger.
if (result == MAX_BYTE_BLOCK_LEN) {
return result;
}
result2 = read_copy_command(decoder, buf + result);
if (result2 == 0) {
return 0;
}
return result + result2;
}
static size_t lha_pm1_read(void *data, uint8_t *buf)
{
LHAPM1Decoder *decoder = data;
int command_type;
// Start of input stream? Read the header.
if (decoder->byte_decode_tree == NULL
&& !read_start_header(decoder)) {
return 0;
}
// Read what type of command this is.
command_type = read_bit(&decoder->bit_stream_reader);
if (command_type == 0) {
return read_copy_command(decoder, buf);
} else {
return read_byte_block(decoder, buf);
}
}
const LHADecoderType lha_pm1_decoder = {
lha_pm1_init,
NULL,
lha_pm1_read,
sizeof(LHAPM1Decoder),
OUTPUT_BUFFER_SIZE,
2048
};
|