File: pm2_decoder.c

package info (click to toggle)
lhasa 0.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,364 kB
  • sloc: ansic: 6,796; sh: 1,938; makefile: 168; python: 129
file content (548 lines) | stat: -rw-r--r-- 13,386 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*

Copyright (c) 2011, 2012, Simon Howard

Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 */

//
// Decoder for PMarc -pm2- compression format.  PMarc is a variant
// of LHA commonly used on the MSX computer architecture.
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include "lha_decoder.h"

#include "bit_stream_reader.c"
#include "pma_common.c"

// Include tree decoder.

typedef uint8_t TreeElement;
#include "tree_decode.c"

// Size of the ring buffer (in bytes) used to store past history
// for copies.

#define RING_BUFFER_SIZE      8192

// Maximum number of bytes that might be placed in the output buffer
// from a single call to lha_pm2_decoder_read (largest copy size).

#define OUTPUT_BUFFER_SIZE    256

// Number of tree elements in the code tree.

#define CODE_TREE_ELEMENTS    65

// Number of tree elements in the offset tree.

#define OFFSET_TREE_ELEMENTS  17

typedef enum {
	PM2_REBUILD_UNBUILT,          // At start of stream
	PM2_REBUILD_BUILD1,           // After 1KiB
	PM2_REBUILD_BUILD2,           // After 2KiB
	PM2_REBUILD_BUILD3,           // After 4KiB
	PM2_REBUILD_CONTINUING,       // 8KiB onwards...
} PM2RebuildState;

typedef struct {
	BitStreamReader bit_stream_reader;

	// State of decode tree.

	PM2RebuildState tree_state;

	// Number of bytes until we initiate a tree rebuild.

	size_t tree_rebuild_remaining;

	// History ring buffer, for copies:

	uint8_t ringbuf[RING_BUFFER_SIZE];
	unsigned int ringbuf_pos;

	// History linked list, for adaptively encoding byte values.

	HistoryLinkedList history_list;

	// Array representing the huffman tree used for representing
	// code values. A given node of the tree has children
	// code_tree[n] and code_tree[n + 1].  code_tree[0] is the
	// root node.

	TreeElement code_tree[CODE_TREE_ELEMENTS];

	// If zero, we don't need an offset tree:

	int need_offset_tree;

	// Array representing huffman tree used to look up offsets.
	// Same format as code_tree[].

	TreeElement offset_tree[OFFSET_TREE_ELEMENTS];

} LHAPM2Decoder;

// Decode table for history value. Characters that appeared recently in
// the history are more likely than ones that appeared a long time ago,
// so the history value is huffman coded so that small values require
// fewer bits. The history value is then used to search within the
// history linked list to get the actual character.

static const VariableLengthTable history_decode[] = {
	{   0, 3 },   //   0 + (1 << 3) =   8
	{   8, 3 },   //   8 + (1 << 3) =  16
	{  16, 4 },   //  16 + (1 << 4) =  32
	{  32, 5 },   //  32 + (1 << 5) =  64
	{  64, 5 },   //  64 + (1 << 5) =  96
	{  96, 5 },   //  96 + (1 << 5) = 128
	{ 128, 6 },   // 128 + (1 << 6) = 192
	{ 192, 6 },   // 192 + (1 << 6) = 256
};

// Decode table for copies. As with history_decode[], small copies
// are more common, and require fewer bits.

static const VariableLengthTable copy_decode[] = {
	{  17, 3 },   //  17 + (1 << 3) =  25
	{  25, 3 },   //  25 + (1 << 3) =  33
	{  33, 5 },   //  33 + (1 << 5) =  65
	{  65, 6 },   //  65 + (1 << 6) = 129
	{ 129, 7 },   // 129 + (1 << 7) = 256
	{ 256, 0 },   // 256 (unique value)
};

// Initialize PMA decoder.

static int lha_pm2_decoder_init(void *data, LHADecoderCallback callback,
                                void *callback_data)
{
	LHAPM2Decoder *decoder = data;

	bit_stream_reader_init(&decoder->bit_stream_reader,
	                       callback, callback_data);

	// Tree has not been built yet.  It needs to be built on
	// the first call to read().

	decoder->tree_state = PM2_REBUILD_UNBUILT;
	decoder->tree_rebuild_remaining = 0;

	// Initialize ring buffer contents.

	memset(&decoder->ringbuf, ' ', RING_BUFFER_SIZE);
	decoder->ringbuf_pos = 0;

	// Init history lookup list.

	init_history_list(&decoder->history_list);

	// Initialize the lookup trees to a known state.

	init_tree(decoder->code_tree, CODE_TREE_ELEMENTS);
	init_tree(decoder->offset_tree, OFFSET_TREE_ELEMENTS);

	return 1;
}

// Read the list of code lengths to use for the code tree and construct
// the code_tree structure.

static int read_code_tree(LHAPM2Decoder *decoder)
{
	uint8_t code_lengths[31];
	int num_codes, min_code_length, length_bits, val;
	unsigned int i;

	// Read the number of codes in the tree.

	num_codes = read_bits(&decoder->bit_stream_reader, 5);

	// Read min_code_length, which is used as an offset.

	min_code_length = read_bits(&decoder->bit_stream_reader, 3);

	if (min_code_length < 0 || num_codes < 0) {
		return 0;
	}

	// Store flag variable indicating whether we want to read
	// the offset tree as well.

	decoder->need_offset_tree
	    = num_codes >= 10
	   && !(num_codes == 29 && min_code_length == 0);

	// Minimum length of zero means a tree containing a single code.

	if (min_code_length == 0) {
		set_tree_single(decoder->code_tree, num_codes - 1);
		return 1;
	}

	// How many bits are used to represent each table entry?

	length_bits = read_bits(&decoder->bit_stream_reader, 3);

	if (length_bits < 0) {
		return 0;
	}

	// Read table of code lengths:

	for (i = 0; i < (unsigned int) num_codes; ++i) {

		// Read a table entry.  A value of zero represents an
		// unused code.  Otherwise the value represents
		// an offset from the minimum length (previously read).

		val = read_bits(&decoder->bit_stream_reader,
		                (unsigned int) length_bits);

		if (val < 0) {
			return 0;
		} else if (val == 0) {
			code_lengths[i] = 0;
		} else {
			code_lengths[i] = (uint8_t) (min_code_length + val - 1);
		}
	}

	// Build the tree.

	build_tree(decoder->code_tree, sizeof(decoder->code_tree),
	           code_lengths, (unsigned int) num_codes);

	return 1;
}

// Read the code lengths for the offset tree and construct the offset
// tree lookup table.

static int read_offset_tree(LHAPM2Decoder *decoder,
                            unsigned int num_offsets)
{
	uint8_t offset_lengths[8];
	unsigned int off;
	unsigned int single_offset, num_codes;
	int len;

	if (!decoder->need_offset_tree) {
		return 1;
	}

	// Read 'num_offsets' 3-bit length values.  For each offset
	// value 'off', offset_lengths[off] is the length of the
	// code that will represent 'off', or 0 if it will not
	// appear within the tree.

	num_codes = 0;
	single_offset = 0;

	for (off = 0; off < num_offsets; ++off) {
		len = read_bits(&decoder->bit_stream_reader, 3);

		if (len < 0) {
			return 0;
		}

		offset_lengths[off] = (uint8_t) len;

		// Track how many actual codes were in the tree.

		if (len != 0) {
			single_offset = off;
			++num_codes;
		}
	}

	// If there was a single code, this is a single node tree.

	if (num_codes == 1) {
		set_tree_single(decoder->offset_tree, single_offset);
		return 1;
	}

	// Build the tree.

	build_tree(decoder->offset_tree, sizeof(decoder->offset_tree),
	           offset_lengths, num_offsets);

	return 1;
}

// Rebuild the decode trees used to compress data.  This is called when
// decoder->tree_rebuild_remaining reaches zero.

static void rebuild_tree(LHAPM2Decoder *decoder)
{
	switch (decoder->tree_state) {

		// Initial tree build, from start of stream:

		case PM2_REBUILD_UNBUILT:
			read_code_tree(decoder);
			read_offset_tree(decoder, 5);
			decoder->tree_state = PM2_REBUILD_BUILD1;
			decoder->tree_rebuild_remaining = 1024;
			break;

		// Tree rebuild after 1KiB of data has been read:

		case PM2_REBUILD_BUILD1:
			read_offset_tree(decoder, 6);
			decoder->tree_state = PM2_REBUILD_BUILD2;
			decoder->tree_rebuild_remaining = 1024;
			break;

		// Tree rebuild after 2KiB of data has been read:

		case PM2_REBUILD_BUILD2:
			read_offset_tree(decoder, 7);
			decoder->tree_state = PM2_REBUILD_BUILD3;
			decoder->tree_rebuild_remaining = 2048;
			break;

		// Tree rebuild after 4KiB of data has been read:

		case PM2_REBUILD_BUILD3:
			if (read_bit(&decoder->bit_stream_reader) == 1) {
				read_code_tree(decoder);
			}
			read_offset_tree(decoder, 8);
			decoder->tree_state = PM2_REBUILD_CONTINUING;
			decoder->tree_rebuild_remaining = 4096;
			break;

		// Tree rebuild after 8KiB of data has been read,
		// and every 4KiB after that:

		case PM2_REBUILD_CONTINUING:
			if (read_bit(&decoder->bit_stream_reader) == 1) {
				read_code_tree(decoder);
				read_offset_tree(decoder, 8);
			}
			decoder->tree_rebuild_remaining = 4096;
			break;
	}
}

static void output_byte(LHAPM2Decoder *decoder, uint8_t *buf,
                        size_t *buf_len, uint8_t b)
{
	// Add to history ring buffer.

	decoder->ringbuf[decoder->ringbuf_pos] = b;
	decoder->ringbuf_pos = (decoder->ringbuf_pos + 1) % RING_BUFFER_SIZE;

	// Add to output buffer.

	buf[*buf_len] = b;
	++*buf_len;

	// Update history chain.

	update_history_list(&decoder->history_list, b);

	// Count down until it is time to perform a rebuild of the
	// lookup trees.

	--decoder->tree_rebuild_remaining;

	if (decoder->tree_rebuild_remaining == 0) {
		rebuild_tree(decoder);
	}
}

// Read a single byte from the input stream and add it to the output
// buffer.

static void read_single_byte(LHAPM2Decoder *decoder, unsigned int code,
                             uint8_t *buf, size_t *buf_len)
{
	int offset;
	uint8_t b;

	offset = decode_variable_length(&decoder->bit_stream_reader,
	                                history_decode, code);

	if (offset < 0) {
		return;
	}

	b = find_in_history_list(&decoder->history_list, (uint8_t) offset);
	output_byte(decoder, buf, buf_len, b);
}

// Calculate how many bytes from history to copy:

static int history_get_count(LHAPM2Decoder *decoder, unsigned int code)
{
	// How many bytes to copy?  A small value represents the
	// literal number of bytes to copy; larger values are a header
	// for a variable length value to be decoded.

	if (code < 15) {
		return (int) code + 2;
	} else {
		return decode_variable_length(&decoder->bit_stream_reader,
		                              copy_decode, code - 15);
	}
}

// Calculate the offset within history at which to start copying:

static int history_get_offset(LHAPM2Decoder *decoder, unsigned int code)
{
	unsigned int bits;
	int result, val;

	result = 0;

	// Calculate number of bits to read.

	// Code of zero indicates a simple 6-bit value giving the offset.

	if (code == 0) {
		bits = 6;
	}

	// Mid-range encoded offset value.
	// Read a code using the offset tree, indicating the length
	// of the offset value to follow.  The code indicates the
	// number of bits (values 0-7 = 6-13 bits).

	else if (code < 20) {

		val = read_from_tree(&decoder->bit_stream_reader,
		                     decoder->offset_tree);

		if (val < 0) {
			return -1;
		} else if (val == 0) {
			bits = 6;
		} else {
			bits = (unsigned int) val + 5;
			result = 1 << bits;
		}
	}

	// Large copy values start from offset zero.

	else {
		return 0;
	}

	// Read a number of bits representing the offset value.  The
	// number of length of this value is variable, and is calculated
	// above.

	val = read_bits(&decoder->bit_stream_reader, bits);

	if (val < 0) {
		return -1;
	}

	result += val;

	return result;
}

static void copy_from_history(LHAPM2Decoder *decoder, unsigned int code,
                              uint8_t *buf, size_t *buf_len)
{
	int to_copy, offset;
	unsigned int i, pos, start;

	// Read number of bytes to copy and offset within history to copy
	// from.

	to_copy = history_get_count(decoder, code);
	offset = history_get_offset(decoder, code);

	if (to_copy < 0 || offset < 0) {
		return;
	}

	// Sanity check to prevent the potential for buffer overflow.

	if (to_copy > OUTPUT_BUFFER_SIZE) {
		return;
	}

	// Perform copy.

	start = decoder->ringbuf_pos + RING_BUFFER_SIZE - 1
	      - (unsigned int) offset;

	for (i = 0; i < (unsigned int) to_copy; ++i) {
		pos = (start + i) % RING_BUFFER_SIZE;

		output_byte(decoder, buf, buf_len, decoder->ringbuf[pos]);
	}
}

// Decode data and store it into buf[], returning the number of
// bytes decoded.

static size_t lha_pm2_decoder_read(void *data, uint8_t *buf)
{
	LHAPM2Decoder *decoder = data;
	size_t result;
	int code;

	// On first pass through, build initial lookup trees.

	if (decoder->tree_state == PM2_REBUILD_UNBUILT) {

		// First bit in stream is discarded?

		read_bit(&decoder->bit_stream_reader);
		rebuild_tree(decoder);
	}

	result = 0;

	code = read_from_tree(&decoder->bit_stream_reader, decoder->code_tree);

	if (code < 0) {
		return 0;
	}

	if (code < 8) {
		read_single_byte(decoder, (unsigned int) code, buf, &result);
	} else {
		copy_from_history(decoder, (unsigned int) code - 8,
		                  buf, &result);
	}

	return result;
}

const LHADecoderType lha_pm2_decoder = {
	lha_pm2_decoder_init,
	NULL,
	lha_pm2_decoder_read,
	sizeof(LHAPM2Decoder),
	OUTPUT_BUFFER_SIZE,
	RING_BUFFER_SIZE
};