1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
/**
* \file
* \brief Various trigoniometric helper functions
*//*
* Authors:
* Johan Engelen <goejendaagh@zonnet.nl>
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright (C) 2007-2010 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_ANGLE_H
#define LIB2GEOM_SEEN_ANGLE_H
#include <cmath>
#include <boost/operators.hpp>
#include <2geom/exception.h>
#include <2geom/coord.h>
#include <2geom/point.h>
namespace Geom {
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifndef M_1_2PI
# define M_1_2PI 0.159154943091895335768883763373
#endif
/** @brief Wrapper for angular values.
*
* This class is a convenience wrapper that implements the behavior generally expected of angles,
* like addition modulo \f$2\pi\f$. The value returned from the default conversion
* to <tt>double</tt> is in the range \f$[-\pi, \pi)\f$ - the convention used by C's
* math library.
*
* This class holds only a single floating point value, so passing it by value will generally
* be faster than passing it by const reference.
*
* @ingroup Primitives
*/
class Angle
: boost::additive< Angle
, boost::additive< Angle, Coord
, boost::equality_comparable< Angle
, boost::equality_comparable< Angle, Coord
> > > >
{
public:
Angle() : _angle(0) {}
Angle(Coord v) : _angle(v) { _normalize(); } // this can be called implicitly
explicit Angle(Point const &p) : _angle(atan2(p)) { _normalize(); }
Angle(Point const &a, Point const &b) : _angle(angle_between(a, b)) { _normalize(); }
operator Coord() const { return radians(); }
Angle &operator+=(Angle o) {
_angle += o._angle;
_normalize();
return *this;
}
Angle &operator-=(Angle o) {
_angle -= o._angle;
_normalize();
return *this;
}
Angle &operator+=(Coord a) {
*this += Angle(a);
return *this;
}
Angle &operator-=(Coord a) {
*this -= Angle(a);
return *this;
}
bool operator==(Angle o) const {
return _angle == o._angle;
}
bool operator==(Coord c) const {
return _angle == Angle(c)._angle;
}
/** @brief Get the angle as radians.
* @return Number in range \f$[-\pi, \pi)\f$. */
Coord radians() const {
return _angle >= M_PI ? _angle - 2*M_PI : _angle;
}
/** @brief Get the angle as positive radians.
* @return Number in range \f$[0, 2\pi)\f$. */
Coord radians0() const {
return _angle;
}
/** @brief Get the angle as degrees in math convention.
* @return Number in range [-180, 180) obtained by scaling the result of radians()
* by \f$180/\pi\f$. */
Coord degrees() const { return radians() * (180.0 / M_PI); }
/** @brief Get the angle as degrees in clock convention.
* This method converts the angle to the "clock convention": angles start from the +Y axis
* and grow clockwise. This means that 0 corresponds to \f$\pi/2\f$ radians,
* 90 to 0 radians, 180 to \f$-\pi/2\f$ radians, and 270 to \f$\pi\f$ radians.
* @return A number in the range [0, 360).
*/
Coord degreesClock() const {
Coord ret = 90.0 - _angle * (180.0 / M_PI);
if (ret < 0) ret += 360;
return ret;
}
/** @brief Create an angle from its measure in radians. */
static Angle from_radians(Coord d) {
Angle a(d);
return a;
}
/** @brief Create an angle from its measure in degrees. */
static Angle from_degrees(Coord d) {
Angle a(d * (M_PI / 180.0));
return a;
}
/** @brief Create an angle from its measure in degrees in clock convention.
* @see Angle::degreesClock() */
static Angle from_degrees_clock(Coord d) {
// first make sure d is in [0, 360)
d = std::fmod(d, 360.0);
if (d < 0) d += 360.0;
Coord rad = M_PI/2 - d * (M_PI / 180.0);
if (rad < 0) rad += 2*M_PI;
Angle a;
a._angle = rad;
return a;
}
private:
void _normalize() {
_angle = std::fmod(_angle, 2*M_PI);
if (_angle < 0) _angle += 2*M_PI;
//_angle -= floor(_angle * (1.0/(2*M_PI))) * 2*M_PI;
}
Coord _angle; // this is always in [0, 2pi)
friend class AngleInterval;
};
inline Angle distance(Angle const &a, Angle const &b) {
// the distance cannot be larger than M_PI.
Coord ac = a.radians0();
Coord bc = b.radians0();
Coord d = fabs(ac - bc);
return Angle(d > M_PI ? 2*M_PI - d : d);
}
/** @brief Directed angular interval.
*
* Wrapper for directed angles with defined start and end values. Useful e.g. for representing
* the portion of an ellipse in an elliptical arc. Both extreme angles are contained
* in the interval (it is a closed interval). Angular intervals can also be interptered
* as functions \f$f: [0, 1] \to [-\pi, \pi)\f$, which return the start angle for 0,
* the end angle for 1, and interpolate linearly for other values. Note that such functions
* are not continuous if the interval crosses the angle \f$\pi\f$.
*
* This class can represent all directed angular intervals, including empty ones.
* However, not all possible intervals can be created with the constructors.
* For full control, use the setInitial(), setFinal() and setAngles() methods.
*
* @ingroup Primitives
*/
class AngleInterval
: boost::equality_comparable< AngleInterval >
{
public:
AngleInterval() {}
/** @brief Create an angular interval from two angles and direction.
* If the initial and final angle are the same, a degenerate interval
* (containing only one angle) will be created.
* @param s Starting angle
* @param e Ending angle
* @param cw Which direction the interval goes. True means that it goes
* in the direction of increasing angles, while false means in the direction
* of decreasing angles. */
AngleInterval(Angle s, Angle e, bool cw = false)
: _start_angle(s), _end_angle(e), _sweep(cw), _full(false)
{}
AngleInterval(double s, double e, bool cw = false)
: _start_angle(s), _end_angle(e), _sweep(cw), _full(false)
{}
/** @brief Create an angular interval from three angles.
* If the inner angle is exactly equal to initial or final angle,
* the sweep flag will be set to true, i.e. the interval will go
* in the direction of increasing angles.
*
* If the initial and final angle are the same, but the inner angle
* is different, a full angle in the direction of increasing angles
* will be created.
*
* @param s Initial angle
* @param inner Angle contained in the interval
* @param e Final angle */
AngleInterval(Angle s, Angle inner, Angle e)
: _start_angle(s)
, _end_angle(e)
, _sweep((inner-s).radians0() <= (e-s).radians0())
, _full(s == e && s != inner)
{
if (_full) {
_sweep = true;
}
}
/// Get the start angle.
Angle initialAngle() const { return _start_angle; }
/// Get the end angle.
Angle finalAngle() const { return _end_angle; }
/// Check whether the interval goes in the direction of increasing angles.
bool sweep() const { return _sweep; }
/// Check whether the interval contains only a single angle.
bool isDegenerate() const {
return _start_angle == _end_angle && !_full;
}
/// Check whether the interval contains all angles.
bool isFull() const {
return _start_angle == _end_angle && _full;
}
/** @brief Set the initial angle.
* @param a Angle to set
* @param prefer_full Whether to set a full angular interval when
* the initial angle is set to the final angle */
void setInitial(Angle a, bool prefer_full = false) {
_start_angle = a;
_full = prefer_full && a == _end_angle;
}
/** @brief Set the final angle.
* @param a Angle to set
* @param prefer_full Whether to set a full angular interval when
* the initial angle is set to the final angle */
void setFinal(Angle a, bool prefer_full = false) {
_end_angle = a;
_full = prefer_full && a == _start_angle;
}
/** @brief Set both angles at once.
* The direction (sweep flag) is left unchanged.
* @param s Initial angle
* @param e Final angle
* @param prefer_full Whether to set a full interval when the passed
* initial and final angle are the same */
void setAngles(Angle s, Angle e, bool prefer_full = false) {
_start_angle = s;
_end_angle = e;
_full = prefer_full && s == e;
}
/// Set whether the interval goes in the direction of increasing angles.
void setSweep(bool s) { _sweep = s; }
/// Reverse the direction of the interval while keeping contained values the same.
void reverse() {
using std::swap;
swap(_start_angle, _end_angle);
_sweep = !_sweep;
}
/// Get a new interval with reversed direction.
AngleInterval reversed() const {
AngleInterval result(*this);
result.reverse();
return result;
}
/// Get an angle corresponding to the specified time value.
Angle angleAt(Coord t) const {
Coord span = extent();
Angle ret = _start_angle.radians0() + span * (_sweep ? t : -t);
return ret;
}
Angle operator()(Coord t) const { return angleAt(t); }
/** @brief Compute a time value that would evaluate to the given angle.
* If the start and end angle are exactly the same, NaN will be returned.
* Negative values will be returned for angles between the initial angle
* and the angle exactly opposite the midpoint of the interval. */
Coord timeAtAngle(Angle a) const {
if (_full) {
Angle ta = _sweep ? a - _start_angle : _start_angle - a;
return ta.radians0() / (2*M_PI);
}
Coord ex = extent();
Coord outex = 2*M_PI - ex;
if (_sweep) {
Angle midout = _start_angle - outex / 2;
Angle acmp = a - midout, scmp = _start_angle - midout;
if (acmp.radians0() >= scmp.radians0()) {
return (a - _start_angle).radians0() / ex;
} else {
return -(_start_angle - a).radians0() / ex;
}
} else {
Angle midout = _start_angle + outex / 2;
Angle acmp = a - midout, scmp = _start_angle - midout;
if (acmp.radians0() <= scmp.radians0()) {
return (_start_angle - a).radians0() / ex;
} else {
return -(a - _start_angle).radians0() / ex;
}
}
}
/// Check whether the interval includes the given angle.
bool contains(Angle a) const {
if (_full) return true;
Coord s = _start_angle.radians0();
Coord e = _end_angle.radians0();
Coord x = a.radians0();
if (_sweep) {
if (s < e) return x >= s && x <= e;
return x >= s || x <= e;
} else {
if (s > e) return x <= s && x >= e;
return x <= s || x >= e;
}
}
/** @brief Extent of the angle interval.
* Equivalent to the absolute value of the sweep angle.
* @return Extent in range \f$[0, 2\pi)\f$. */
Coord extent() const {
if (_full) return 2*M_PI;
return _sweep
? (_end_angle - _start_angle).radians0()
: (_start_angle - _end_angle).radians0();
}
/** @brief Get the sweep angle of the interval.
* This is the value you need to add to the initial angle to get the final angle.
* It is positive when sweep is true. Denoted as \f$\Delta\theta\f$ in the SVG
* elliptical arc implementation notes. */
Coord sweepAngle() const {
if (_full) return _sweep ? 2*M_PI : -2*M_PI;
Coord sa = _end_angle.radians0() - _start_angle.radians0();
if (_sweep && sa < 0) sa += 2*M_PI;
if (!_sweep && sa > 0) sa -= 2*M_PI;
return sa;
}
/// Check another interval for equality.
bool operator==(AngleInterval const &other) const {
if (_start_angle != other._start_angle) return false;
if (_end_angle != other._end_angle) return false;
if (_sweep != other._sweep) return false;
if (_full != other._full) return false;
return true;
}
static AngleInterval create_full(Angle start, bool sweep = true) {
AngleInterval result;
result._start_angle = result._end_angle = start;
result._sweep = sweep;
result._full = true;
return result;
}
private:
Angle _start_angle;
Angle _end_angle;
bool _sweep;
bool _full;
};
/** @brief Given an angle in degrees, return radians
* @relates Angle */
inline constexpr Coord rad_from_deg(Coord deg) { return deg / 180.0 * M_PI;}
/** @brief Given an angle in radians, return degrees
* @relates Angle */
inline constexpr Coord deg_from_rad(Coord rad) { return rad / M_PI * 180.0;}
} // namespace Geom
namespace std {
template <> class iterator_traits<Geom::Angle> {};
}
#endif // LIB2GEOM_SEEN_ANGLE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|