1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/**
* \file
* \brief Bezier curve
*//*
* Authors:
* MenTaLguY <mental@rydia.net>
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright 2007-2011 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_BEZIER_CURVE_H
#define LIB2GEOM_SEEN_BEZIER_CURVE_H
#include <2geom/curve.h>
#include <2geom/sbasis-curve.h> // for non-native winding method
#include <2geom/bezier.h>
#include <2geom/transforms.h>
namespace Geom
{
class BezierCurve : public Curve {
protected:
D2<Bezier> inner;
BezierCurve() {}
BezierCurve(Bezier const &x, Bezier const &y) : inner(x, y) {}
BezierCurve(std::vector<Point> const &pts);
public:
explicit BezierCurve(D2<Bezier> const &b) : inner(b) {}
/// @name Access and modify control points
/// @{
/** @brief Get the order of the Bezier curve.
* A Bezier curve has order() + 1 control points. */
unsigned order() const { return inner[X].order(); }
/** @brief Get the number of control points. */
unsigned size() const { return inner[X].order() + 1; }
/** @brief Access control points of the curve.
* @param ix The (zero-based) index of the control point. Note that the caller is responsible for checking that this value is <= order().
* @return The control point. No-reference return, use setPoint() to modify control points. */
Point controlPoint(unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); }
Point operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); }
/** @brief Get the control points.
* @return Vector with order() + 1 control points. */
std::vector<Point> controlPoints() const { return bezier_points(inner); }
D2<Bezier> const &fragment() const { return inner; }
/** @brief Modify a control point.
* @param ix The zero-based index of the point to modify. Note that the caller is responsible for checking that this value is <= order().
* @param v The new value of the point */
void setPoint(unsigned ix, Point const &v) {
inner[X][ix] = v[X];
inner[Y][ix] = v[Y];
}
/** @brief Set new control points.
* @param ps Vector which must contain order() + 1 points.
* Note that the caller is responsible for checking the size of this vector.
* @throws LogicalError Thrown when the size of the vector does not match the order. */
virtual void setPoints(std::vector<Point> const &ps) {
// must be virtual, because HLineSegment will need to redefine it
if (ps.size() != order() + 1)
THROW_LOGICALERROR("BezierCurve::setPoints: incorrect number of points in vector");
for(unsigned i = 0; i <= order(); i++) {
setPoint(i, ps[i]);
}
}
/// @}
/// @name Construct a Bezier curve with runtime-determined order.
/// @{
/** @brief Construct a curve from a vector of control points.
* This will construct the appropriate specialization of BezierCurve (i.e. LineSegment,
* QuadraticBezier or Cubic Bezier) if the number of control points in the passed vector
* does not exceed 4. */
static BezierCurve *create(std::vector<Point> const &pts);
/// @}
// implementation of virtual methods goes here
Point initialPoint() const override { return inner.at0(); }
Point finalPoint() const override { return inner.at1(); }
bool isDegenerate() const override;
bool isLineSegment() const override;
void setInitial(Point const &v) override { setPoint(0, v); }
void setFinal(Point const &v) override { setPoint(order(), v); }
Rect boundsFast() const override { return *bounds_fast(inner); }
Rect boundsExact() const override { return *bounds_exact(inner); }
void expandToTransformed(Rect &bbox, Affine const &transform) const override;
OptRect boundsLocal(OptInterval const &i, unsigned deg) const override {
if (!i) return OptRect();
if(i->min() == 0 && i->max() == 1) return boundsFast();
if(deg == 0) return bounds_local(inner, i);
// TODO: UUUUUUGGGLLY
if(deg == 1 && order() > 1) return OptRect(bounds_local(Geom::derivative(inner[X]), i),
bounds_local(Geom::derivative(inner[Y]), i));
return OptRect();
}
Curve *duplicate() const override {
return new BezierCurve(*this);
}
Curve *portion(Coord f, Coord t) const override;
Curve *reverse() const override {
return new BezierCurve(Geom::reverse(inner));
}
using Curve::operator*=;
void operator*=(Translate const &tr) override {
for (unsigned i = 0; i < size(); ++i) {
inner[X][i] += tr[X];
inner[Y][i] += tr[Y];
}
}
void operator*=(Scale const &s) override {
for (unsigned i = 0; i < size(); ++i) {
inner[X][i] *= s[X];
inner[Y][i] *= s[Y];
}
}
void operator*=(Affine const &m) override {
for (unsigned i = 0; i < size(); ++i) {
setPoint(i, controlPoint(i) * m);
}
}
Curve *derivative() const override {
return new BezierCurve(Geom::derivative(inner[X]), Geom::derivative(inner[Y]));
}
int degreesOfFreedom() const override {
return 2 * (order() + 1);
}
std::vector<Coord> roots(Coord v, Dim2 d) const override {
return (inner[d] - v).roots();
}
Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const override;
Coord length(Coord tolerance) const override;
std::vector<CurveIntersection> intersect(Curve const &other, Coord eps = EPSILON) const override;
Point pointAt(Coord t) const override { return inner.pointAt(t); }
std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const override {
return inner.valueAndDerivatives(t, n);
}
Coord valueAt(Coord t, Dim2 d) const override { return inner[d].valueAt(t); }
D2<SBasis> toSBasis() const override {return inner.toSBasis(); }
bool isNear(Curve const &c, Coord precision) const override;
void feed(PathSink &sink, bool) const override;
std::vector<Coord> timesWithRadiusOfCurvature(double radius) const;
protected:
bool _equalTo(Curve const &c) const override;
};
template <unsigned degree>
class BezierCurveN
: public BezierCurve
{
template <unsigned required_degree>
static void assert_degree(BezierCurveN<required_degree> const *) {}
public:
/// @name Construct Bezier curves
/// @{
/** @brief Construct a Bezier curve of the specified order with all points zero. */
BezierCurveN() {
inner = D2<Bezier>(Bezier(Bezier::Order(degree)), Bezier(Bezier::Order(degree)));
}
/** @brief Construct from 2D Bezier polynomial. */
explicit BezierCurveN(D2<Bezier > const &x) {
inner = x;
}
/** @brief Construct from two 1D Bezier polynomials of the same order. */
BezierCurveN(Bezier x, Bezier y) {
inner = D2<Bezier > (x,y);
}
/** @brief Construct a Bezier curve from a vector of its control points. */
BezierCurveN(std::vector<Point> const &points) {
unsigned ord = points.size() - 1;
if (ord != degree) THROW_LOGICALERROR("BezierCurve<degree> does not match number of points");
for (unsigned d = 0; d < 2; ++d) {
inner[d] = Bezier(Bezier::Order(ord));
for(unsigned i = 0; i <= ord; i++)
inner[d][i] = points[i][d];
}
}
/** @brief Construct a linear segment from its endpoints. */
BezierCurveN(Point c0, Point c1) {
assert_degree<1>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d]);
}
/** @brief Construct a quadratic Bezier curve from its control points. */
BezierCurveN(Point c0, Point c1, Point c2) {
assert_degree<2>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d]);
}
/** @brief Construct a cubic Bezier curve from its control points. */
BezierCurveN(Point c0, Point c1, Point c2, Point c3) {
assert_degree<3>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]);
}
// default copy
// default assign
/// @}
/** @brief Divide a Bezier curve into two curves
* @param t Time value
* @return Pair of Bezier curves \f$(\mathbf{D}, \mathbf{E})\f$ such that
* \f$\mathbf{D}[ [0,1] ] = \mathbf{C}[ [0,t] ]\f$ and
* \f$\mathbf{E}[ [0,1] ] = \mathbf{C}[ [t,1] ]\f$ */
std::pair<BezierCurveN, BezierCurveN> subdivide(Coord t) const {
std::pair<Bezier, Bezier> sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t);
return std::make_pair(
BezierCurveN(sx.first, sy.first),
BezierCurveN(sx.second, sy.second));
}
bool isDegenerate() const override {
return BezierCurve::isDegenerate();
}
bool isLineSegment() const override {
if constexpr (degree == 1) {
return true;
} else {
return BezierCurve::isLineSegment();
}
}
Curve *duplicate() const override {
return new BezierCurveN(*this);
}
Curve *portion(Coord f, Coord t) const override {
if (degree == 1) {
return new BezierCurveN<1>(pointAt(f), pointAt(t));
} else {
return new BezierCurveN(Geom::portion(inner, f, t));
}
}
Curve *reverse() const override {
if (degree == 1) {
return new BezierCurveN<1>(finalPoint(), initialPoint());
} else {
return new BezierCurveN(Geom::reverse(inner));
}
}
Curve *derivative() const override;
Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const override {
return BezierCurve::nearestTime(p, from, to);
}
std::vector<CurveIntersection> intersect(Curve const &other, Coord eps = EPSILON) const override {
// call super. this is implemented only to allow specializations
return BezierCurve::intersect(other, eps);
}
int winding(Point const &p) const override {
return Curve::winding(p);
}
void feed(PathSink &sink, bool moveto_initial) const override {
// call super. this is implemented only to allow specializations
BezierCurve::feed(sink, moveto_initial);
}
void expandToTransformed(Rect &bbox, Affine const &transform) const override {
// call super. this is implemented only to allow specializations
BezierCurve::expandToTransformed(bbox, transform);
}
};
// BezierCurveN<0> is meaningless; specialize it out
template<> class BezierCurveN<0> : public BezierCurveN<1> { private: BezierCurveN();};
/** @brief Line segment.
* Line segments are Bezier curves of order 1. They have only two control points,
* the starting point and the ending point.
* @ingroup Curves */
typedef BezierCurveN<1> LineSegment;
/** @brief Quadratic (order 2) Bezier curve.
* @ingroup Curves */
typedef BezierCurveN<2> QuadraticBezier;
/** @brief Cubic (order 3) Bezier curve.
* @ingroup Curves */
typedef BezierCurveN<3> CubicBezier;
template <unsigned degree>
inline
Curve *BezierCurveN<degree>::derivative() const {
return new BezierCurveN<degree-1>(Geom::derivative(inner[X]), Geom::derivative(inner[Y]));
}
// optimized specializations
template <> inline bool BezierCurveN<1>::isDegenerate() const {
return inner[X][0] == inner[X][1] && inner[Y][0] == inner[Y][1];
}
template <> inline bool BezierCurveN<1>::isLineSegment() const { return true; }
template <> Curve *BezierCurveN<1>::derivative() const;
template <> Coord BezierCurveN<1>::nearestTime(Point const &, Coord, Coord) const;
template <> std::vector<CurveIntersection> BezierCurveN<1>::intersect(Curve const &, Coord) const;
template <> std::vector<CurveIntersection> BezierCurveN<2>::intersect(Curve const &, Coord) const;
template <> std::vector<CurveIntersection> BezierCurveN<3>::intersect(Curve const &, Coord) const;
template <> int BezierCurveN<1>::winding(Point const &) const;
template <> void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const;
template <> void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const;
template <> void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const;
template <> void BezierCurveN<1>::expandToTransformed(Rect &bbox, Affine const &transform) const;
template <> void BezierCurveN<2>::expandToTransformed(Rect &bbox, Affine const &transform) const;
template <> void BezierCurveN<3>::expandToTransformed(Rect &bbox, Affine const &transform) const;
inline Point middle_point(LineSegment const& _segment) {
return ( _segment.initialPoint() + _segment.finalPoint() ) / 2;
}
inline Coord length(LineSegment const& seg) {
return distance(seg.initialPoint(), seg.finalPoint());
}
Coord bezier_length(std::vector<Point> const &points, Coord tolerance = 0.01);
Coord bezier_length(Point p0, Point p1, Point p2, Coord tolerance = 0.01);
Coord bezier_length(Point p0, Point p1, Point p2, Point p3, Coord tolerance = 0.01);
} // end namespace Geom
#endif // LIB2GEOM_SEEN_BEZIER_CURVE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|