1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/**
* @file
* @brief Bernstein-Bezier polynomial
*//*
* Authors:
* MenTaLguY <mental@rydia.net>
* Michael Sloan <mgsloan@gmail.com>
* Nathan Hurst <njh@njhurst.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
*
* Copyright 2007-2015 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_BEZIER_H
#define LIB2GEOM_SEEN_BEZIER_H
#include <algorithm>
#include <valarray>
#include <2geom/coord.h>
#include <2geom/d2.h>
#include <2geom/math-utils.h>
namespace Geom {
/** @brief Compute the value of a Bernstein-Bezier polynomial.
* This method uses a Horner-like fast evaluation scheme.
* @param t Time value
* @param c_ Pointer to coefficients
* @param n Degree of the polynomial (number of coefficients minus one) */
template <typename T>
inline T bernstein_value_at(double t, T const *c_, unsigned n) {
double u = 1.0 - t;
double bc = 1;
double tn = 1;
T tmp = c_[0]*u;
for(unsigned i=1; i<n; i++){
tn = tn*t;
bc = bc*(n-i+1)/i;
tmp = (tmp + tn*bc*c_[i])*u;
}
return (tmp + tn*t*c_[n]);
}
/** @brief Perform Casteljau subdivision of a Bezier polynomial.
* Given an array of coefficients and a time value, computes two new Bernstein-Bezier basis
* polynomials corresponding to the \f$[0, t]\f$ and \f$[t, 1]\f$ intervals of the original one.
* @param t Time value
* @param v Array of input coordinates
* @param left Output polynomial corresponding to \f$[0, t]\f$
* @param right Output polynomial corresponding to \f$[t, 1]\f$
* @param order Order of the input polynomial, equal to one less the number of coefficients
* @return Value of the polynomial at @a t */
template <typename T>
inline T casteljau_subdivision(double t, T const *v, T *left, T *right, unsigned order) {
// The Horner-like scheme gives very slightly different results, but we need
// the result of subdivision to match exactly with Bezier's valueAt function.
T val = bernstein_value_at(t, v, order);
if (!left && !right) {
return val;
}
if (!right) {
if (left != v) {
std::copy(v, v + order + 1, left);
}
for (std::size_t i = order; i > 0; --i) {
for (std::size_t j = i; j <= order; ++j) {
left[j] = lerp(t, left[j-1], left[j]);
}
}
left[order] = val;
return left[order];
}
if (right != v) {
std::copy(v, v + order + 1, right);
}
for (std::size_t i = 1; i <= order; ++i) {
if (left) {
left[i-1] = right[0];
}
for (std::size_t j = i; j > 0; --j) {
right[j-1] = lerp(t, right[j-1], right[j]);
}
}
right[0] = val;
if (left) {
left[order] = right[0];
}
return right[0];
}
/**
* @brief Polynomial in Bernstein-Bezier basis
* @ingroup Fragments
*/
class Bezier
: boost::arithmetic< Bezier, double
, boost::additive< Bezier
> >
{
private:
std::valarray<Coord> c_;
friend Bezier portion(const Bezier & a, Coord from, Coord to);
friend OptInterval bounds_fast(Bezier const & b);
friend Bezier derivative(const Bezier & a);
friend class Bernstein;
void
find_bezier_roots(std::vector<double> & solutions,
double l, double r) const;
protected:
Bezier(Coord const c[], unsigned ord)
: c_(c, ord+1)
{}
public:
unsigned order() const { return c_.size()-1;}
unsigned degree() const { return order(); }
unsigned size() const { return c_.size();}
Bezier() {}
Bezier(const Bezier& b) :c_(b.c_) {}
Bezier &operator=(Bezier const &other) {
if ( c_.size() != other.c_.size() ) {
c_.resize(other.c_.size());
}
c_ = other.c_;
return *this;
}
bool operator==(Bezier const &other) const
{
if (degree() != other.degree()) {
return false;
}
for (size_t i = 0; i < c_.size(); i++) {
if (c_[i] != other.c_[i]) {
return false;
}
}
return true;
}
bool operator!=(Bezier const &other) const
{
return !(*this == other);
}
struct Order {
unsigned order;
explicit Order(Bezier const &b) : order(b.order()) {}
explicit Order(unsigned o) : order(o) {}
operator unsigned() const { return order; }
};
//Construct an arbitrary order bezier
Bezier(Order ord) : c_(0., ord.order+1) {
assert(ord.order == order());
}
/// @name Construct Bezier polynomials from their control points
/// @{
explicit Bezier(Coord c0) : c_(0., 1) {
c_[0] = c0;
}
Bezier(Coord c0, Coord c1) : c_(0., 2) {
c_[0] = c0; c_[1] = c1;
}
Bezier(Coord c0, Coord c1, Coord c2) : c_(0., 3) {
c_[0] = c0; c_[1] = c1; c_[2] = c2;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3) : c_(0., 4) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4) : c_(0., 5) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4,
Coord c5) : c_(0., 6) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
c_[5] = c5;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4,
Coord c5, Coord c6) : c_(0., 7) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
c_[5] = c5; c_[6] = c6;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4,
Coord c5, Coord c6, Coord c7) : c_(0., 8) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
c_[5] = c5; c_[6] = c6; c_[7] = c7;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4,
Coord c5, Coord c6, Coord c7, Coord c8) : c_(0., 9) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
c_[5] = c5; c_[6] = c6; c_[7] = c7; c_[8] = c8;
}
Bezier(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4,
Coord c5, Coord c6, Coord c7, Coord c8, Coord c9) : c_(0., 10) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3; c_[4] = c4;
c_[5] = c5; c_[6] = c6; c_[7] = c7; c_[8] = c8; c_[9] = c9;
}
template <typename Iter>
Bezier(Iter first, Iter last) {
c_.resize(std::distance(first, last));
for (std::size_t i = 0; first != last; ++first, ++i) {
c_[i] = *first;
}
}
Bezier(std::vector<Coord> const &vec)
: c_(&vec[0], vec.size())
{}
/// @}
void resize (unsigned int n, Coord v = 0) {
c_.resize (n, v);
}
void clear() {
c_.resize(0);
}
//IMPL: FragmentConcept
typedef Coord output_type;
bool isZero(double eps=EPSILON) const {
for(unsigned i = 0; i <= order(); i++) {
if( ! are_near(c_[i], 0., eps) ) return false;
}
return true;
}
bool isConstant(double eps=EPSILON) const {
for(unsigned i = 1; i <= order(); i++) {
if( ! are_near(c_[i], c_[0], eps) ) return false;
}
return true;
}
bool isFinite() const {
for(unsigned i = 0; i <= order(); i++) {
if(!std::isfinite(c_[i])) return false;
}
return true;
}
Coord at0() const { return c_[0]; }
Coord &at0() { return c_[0]; }
Coord at1() const { return c_[order()]; }
Coord &at1() { return c_[order()]; }
Coord valueAt(double t) const {
return bernstein_value_at(t, &c_[0], order());
}
Coord operator()(double t) const { return valueAt(t); }
SBasis toSBasis() const;
Coord &operator[](unsigned ix) { return c_[ix]; }
Coord const &operator[](unsigned ix) const { return c_[ix]; }
void setCoeff(unsigned ix, double val) { c_[ix] = val; }
// The size of the returned vector equals n_derivs+1.
std::vector<Coord> valueAndDerivatives(Coord t, unsigned n_derivs) const;
void subdivide(Coord t, Bezier *left, Bezier *right) const;
std::pair<Bezier, Bezier> subdivide(Coord t) const;
std::vector<Coord> roots() const;
std::vector<Coord> roots(Interval const &ivl) const;
Bezier forward_difference(unsigned k) const;
Bezier elevate_degree() const;
Bezier reduce_degree() const;
Bezier elevate_to_degree(unsigned newDegree) const;
Bezier deflate() const;
// basic arithmetic operators
Bezier &operator+=(double v) {
c_ += v;
return *this;
}
Bezier &operator-=(double v) {
c_ -= v;
return *this;
}
Bezier &operator*=(double v) {
c_ *= v;
return *this;
}
Bezier &operator/=(double v) {
c_ /= v;
return *this;
}
Bezier &operator+=(Bezier const &other);
Bezier &operator-=(Bezier const &other);
/// Unary minus
Bezier operator-() const
{
Bezier result;
result.c_ = -c_;
return result;
}
};
void bezier_to_sbasis(SBasis &sb, Bezier const &bz);
Bezier operator*(Bezier const &f, Bezier const &g);
inline Bezier multiply(Bezier const &f, Bezier const &g) {
Bezier result = f * g;
return result;
}
inline Bezier reverse(const Bezier & a) {
Bezier result = Bezier(Bezier::Order(a));
for(unsigned i = 0; i <= a.order(); i++)
result[i] = a[a.order() - i];
return result;
}
Bezier portion(const Bezier & a, double from, double to);
// XXX Todo: how to handle differing orders
inline std::vector<Point> bezier_points(const D2<Bezier > & a) {
std::vector<Point> result;
for(unsigned i = 0; i <= a[0].order(); i++) {
Point p;
for(unsigned d = 0; d < 2; d++) p[d] = a[d][i];
result.push_back(p);
}
return result;
}
Bezier derivative(Bezier const &a);
Bezier integral(Bezier const &a);
OptInterval bounds_fast(Bezier const &b);
OptInterval bounds_exact(Bezier const &b);
OptInterval bounds_local(Bezier const &b, OptInterval const &i);
/// Expand an interval to the image of a Bézier-Bernstein polynomial, assuming it already contains the initial point x0.
void bezier_expand_to_image(Interval &range, Coord x0, Coord x1, Coord x2);
void bezier_expand_to_image(Interval &range, Coord x0, Coord x1, Coord x2, Coord x3);
inline std::ostream &operator<< (std::ostream &os, const Bezier & b) {
os << "Bezier(";
for(unsigned i = 0; i < b.order(); i++) {
os << format_coord_nice(b[i]) << ", ";
}
os << format_coord_nice(b[b.order()]) << ")";
return os;
}
} // namespace Geom
#endif // LIB2GEOM_SEEN_BEZIER_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|