1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/** @file
* @brief Conic section clipping with respect to a rectangle
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail>
*
* Copyright 2009 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_CONIC_SECTION_CLIPPER_IMPL_H
#define LIB2GEOM_SEEN_CONIC_SECTION_CLIPPER_IMPL_H
#include <2geom/conicsec.h>
#include <2geom/line.h>
#include <list>
#include <map>
#ifdef CLIP_WITH_CAIRO_SUPPORT
#include <2geom/toys/path-cairo.h>
#define CLIPPER_CLASS clipper_cr
#else
#define CLIPPER_CLASS clipper
#endif
//#define CLIPDBG
#ifdef CLIPDBG
#include <2geom/toys/path-cairo.h>
#define DBGINFO(msg) \
std::cerr << msg << std::endl;
#define DBGPRINT(msg, var) \
std::cerr << msg << var << std::endl;
#define DBGPRINTIF(cond, msg, var) \
if (cond) \
std::cerr << msg << var << std::endl;
#define DBGPRINT2(msg1, var1, msg2, var2) \
std::cerr << msg1 << var1 << msg2 << var2 << std::endl;
#define DBGPRINTCOLL(msg, coll) \
if (coll.size() != 0) \
std::cerr << msg << ":\n"; \
for (size_t i = 0; i < coll.size(); ++i) \
{ \
std::cerr << i << ": " << coll[i] << "\n"; \
}
#else
#define DBGINFO(msg)
#define DBGPRINT(msg, var)
#define DBGPRINTIF(cond, msg, var)
#define DBGPRINT2(msg1, var1, msg2, var2)
#define DBGPRINTCOLL(msg, coll)
#endif
namespace Geom
{
class CLIPPER_CLASS
{
public:
#ifdef CLIP_WITH_CAIRO_SUPPORT
clipper_cr (cairo_t* _cr, const xAx & _cs, const Rect & _R)
: cr(_cr), cs(_cs), R(_R)
{
DBGPRINT ("CLIP: right side: ", R.right())
DBGPRINT ("CLIP: top side: ", R.top())
DBGPRINT ("CLIP: left side: ", R.left())
DBGPRINT ("CLIP: bottom side: ", R.bottom())
}
#else
clipper (const xAx & _cs, const Rect & _R)
: cs(_cs), R(_R)
{
}
#endif
bool clip (std::vector<RatQuad> & arcs);
bool found_any_isolated_point() const
{
return ( !single_points.empty() );
}
const std::vector<Point> & isolated_points() const
{
return single_points;
}
private:
bool intersect (std::vector<Point> & crossing_points) const;
bool are_paired (Point & M, const Point & P1, const Point & P2) const;
void pairing (std::vector<Point> & paired_points,
std::vector<Point> & inner_points,
const std::vector<Point> & crossing_points);
Point find_inner_point_by_bisector_line (const Point & P,
const Point & Q) const;
Point find_inner_point (const Point & P, const Point & Q) const;
std::list<Point>::iterator split (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp) const;
void rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
size_t k) const;
void rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
double length) const;
private:
#ifdef CLIP_WITH_CAIRO_SUPPORT
cairo_t* cr;
#endif
const xAx & cs;
const Rect & R;
std::vector<Point> single_points;
};
/*
* Given two point "P", "Q" on the conic section the method computes
* a third point inner to the arc with end-point "P", "Q".
* The new point is found by intersecting the conic with the bisector line
* of the PQ line segment.
*/
inline
Point CLIPPER_CLASS::find_inner_point_by_bisector_line (const Point & P,
const Point & Q) const
{
DBGPRINT ("CLIP: find_inner_point_by_bisector_line: P = ", P)
DBGPRINT ("CLIP: find_inner_point_by_bisector_line: Q = ", Q)
Line bl = make_bisector_line (LineSegment (P, Q));
std::vector<double> rts = cs.roots (bl);
//DBGPRINT ("CLIP: find_inner_point: rts.size = ", rts.size())
double t;
if (rts.size() == 0)
{
THROW_LOGICALERROR ("clipper::find_inner_point_by_bisector_line: "
"no conic-bisector line intersection point");
}
if (rts.size() == 2)
{
// we suppose that the searched point is the nearest
// to the line segment PQ
t = (std::fabs(rts[0]) < std::fabs(rts[1])) ? rts[0] : rts[1];
}
else
{
t = rts[0];
}
return bl.pointAt (t);
}
/*
* Given two point "P", "Q" on the conic section the method computes
* a third point inner to the arc with end-point "P", "Q".
* The new point is found by intersecting the conic with the line
* passing through the middle point of the PQ line segment and
* the intersection point of the tangent lines at points P and Q.
*/
inline
Point CLIPPER_CLASS::find_inner_point (const Point & P, const Point & Q) const
{
Line l1 = cs.tangent (P);
Line l2 = cs.tangent (Q);
Line l;
// in case we fail to find a crossing point we fall back to the bisector
// method
try
{
OptCrossing oc = intersection(l1, l2);
if (!oc)
{
return find_inner_point_by_bisector_line (P, Q);
}
l.setPoints (l1.pointAt (oc->ta), middle_point (P, Q));
}
catch (Geom::InfiniteSolutions const &e)
{
return find_inner_point_by_bisector_line (P, Q);
}
std::vector<double> rts = cs.roots (l);
double t;
if (rts.size() == 0)
{
return find_inner_point_by_bisector_line (P, Q);
}
// the line "l" origin is set to the tangent crossing point so in case
// we find two intersection points only the nearest belongs to the given arc
// pay attention: in case we are dealing with an hyperbola (remember that
// end points are on the same branch, because they are paired) the tangent
// crossing point belongs to the angle delimited by hyperbola asymptotes
// and containing the given hyperbola branch, so the previous statement is
// still true
if (rts.size() == 2)
{
t = (std::fabs(rts[0]) < std::fabs(rts[1])) ? rts[0] : rts[1];
}
else
{
t = rts[0];
}
return l.pointAt (t);
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* finds a new point that is inner to the conic arc which has the two passed
* points as initial and final point. This new point is inserted into the list
* between the two passed points and an iterator pointing to the new point
* is returned.
*/
inline
std::list<Point>::iterator CLIPPER_CLASS::split (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp) const
{
Point new_point = find_inner_point (*sp, *fp);
std::list<Point>::iterator ip = points.insert (fp, new_point);
//std::cerr << "CLIP: split: [" << *sp << ", " << *ip << ", "
// << *fp << "]" << std::endl;
return ip;
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* recursively finds new points that are inner to the conic arc which has
* the two passed points as initial and final point. The recursion stop after
* "k" recursive calls. These new points are inserted into the list between
* the two passed points, and in the order we cross them going from
* the initial to the final arc point.
*/
inline
void CLIPPER_CLASS::rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
size_t k) const
{
if (k == 0)
{
//DBGINFO("CLIP: split: no further split")
return;
}
std::list<Point>::iterator ip = split (points, sp, fp);
--k;
rsplit (points, sp, ip, k);
rsplit (points, ip, fp, k);
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* recursively finds new points that are inner to the conic arc which has
* the two passed points as initial and final point. The recursion stop when
* the max distance between the new computed inner point and the two passed
* arc end-points is less then the value specified by the "length" parameter.
* These new points are inserted into the list between the two passed points,
* and in the order we cross them going from the initial to the final arc point.
*/
inline
void CLIPPER_CLASS::rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
double length) const
{
std::list<Point>::iterator ip = split (points, sp, fp);
double d1 = distance (*sp, *ip);
double d2 = distance (*ip, *fp);
double mdist = std::max (d1, d2);
if (mdist < length)
{
//DBGINFO("CLIP: split: no further split")
return;
}
// they have to be called both to keep the number of points in the list
// in the form 2k+1 where k are the sub-arcs the initial arc is split in.
rsplit (points, sp, ip, length);
rsplit (points, ip, fp, length);
}
} // end namespace Geom
#endif // LIB2GEOM_SEEN_CONIC_SECTION_CLIPPER_IMPL_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|