1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/**
* @file
* @brief Structure representing the intersection of two curves
*//*
* Authors:
* Michael Sloan <mgsloan@gmail.com>
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2006-2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_CROSSING_H
#define LIB2GEOM_SEEN_CROSSING_H
#include <vector>
#include <2geom/rect.h>
#include <2geom/sweep-bounds.h>
#include <optional>
#include <2geom/pathvector.h>
namespace Geom {
//Crossing between one or two paths
struct Crossing {
bool dir; //True: along a, a becomes outside.
double ta, tb; //time on a and b of crossing
unsigned a, b; //storage of indices
Crossing() : dir(false), ta(0), tb(1), a(0), b(1) {}
Crossing(double t_a, double t_b, bool direction) : dir(direction), ta(t_a), tb(t_b), a(0), b(1) {}
Crossing(double t_a, double t_b, unsigned ai, unsigned bi, bool direction) : dir(direction), ta(t_a), tb(t_b), a(ai), b(bi) {}
bool operator==(const Crossing & other) const { return a == other.a && b == other.b && dir == other.dir && ta == other.ta && tb == other.tb; }
bool operator!=(const Crossing & other) const { return !(*this == other); }
unsigned getOther(unsigned cur) const { return a == cur ? b : a; }
double getTime(unsigned cur) const { return a == cur ? ta : tb; }
double getOtherTime(unsigned cur) const { return a == cur ? tb : ta; }
bool onIx(unsigned ix) const { return a == ix || b == ix; }
};
typedef std::optional<Crossing> OptCrossing;
/*
struct Edge {
unsigned node, path;
double time;
bool reverse;
Edge(unsigned p, double t, bool r) : path(p), time(t), reverse(r) {}
bool operator==(Edge const &other) const { return other.path == path && other.time == time && other.reverse == reverse; }
};
struct CrossingNode {
std::vector<Edge> edges;
CrossingNode() : edges(std::vector<Edge>()) {}
explicit CrossingNode(std::vector<Edge> es) : edges(es) {}
void add_edge(Edge const &e) {
if(std::find(edges.begin(), edges.end(), e) == edges.end())
edges.push_back(e);
}
double time_on(unsigned p) {
for(unsigned i = 0; i < edges.size(); i++)
if(edges[i].path == p) return edges[i].time;
std::cout << "CrossingNode time_on failed\n";
return 0;
}
};
typedef std::vector<CrossingNode> CrossingGraph;
struct TimeOrder {
bool operator()(Edge a, Edge b) {
return a.time < b.time;
}
};
class Path;
CrossingGraph create_crossing_graph(PathVector const &p, Crossings const &crs);
*/
/*inline bool are_near(Crossing a, Crossing b) {
return are_near(a.ta, b.ta) && are_near(a.tb, b.tb);
}
struct NearF { bool operator()(Crossing a, Crossing b) { return are_near(a, b); } };
*/
struct CrossingOrder {
unsigned ix;
bool rev;
CrossingOrder(unsigned i, bool r = false) : ix(i), rev(r) {}
bool operator()(Crossing a, Crossing b) {
if(rev)
return (ix == a.a ? a.ta : a.tb) <
(ix == b.a ? b.ta : b.tb);
else
return (ix == a.a ? a.ta : a.tb) >
(ix == b.a ? b.ta : b.tb);
}
};
typedef std::vector<Crossing> Crossings;
typedef std::vector<Crossings> CrossingSet;
template<typename C>
std::vector<Rect> bounds(C const &a) {
std::vector<Rect> rs;
for (unsigned i = 0; i < a.size(); i++) {
OptRect bb = a[i].boundsFast();
if (bb) {
rs.push_back(*bb);
}
}
return rs;
}
// provide specific method for Paths because paths can be closed or open. Path::size() is named somewhat wrong...
std::vector<Rect> bounds(Path const &a);
inline void sort_crossings(Crossings &cr, unsigned ix) { std::sort(cr.begin(), cr.end(), CrossingOrder(ix)); }
template <typename T>
struct CrossingTraits {
typedef std::vector<T> VectorT;
static inline VectorT init(T const &x) { return VectorT(1, x); }
};
template <>
struct CrossingTraits<Path> {
typedef PathVector VectorT;
static inline VectorT vector_one(Path const &x) { return VectorT(x); }
};
template<typename T>
struct Crosser {
typedef typename CrossingTraits<T>::VectorT VectorT;
virtual ~Crosser() {}
virtual Crossings crossings(T const &a, T const &b) {
return crossings(CrossingTraits<T>::vector_one(a), CrossingTraits<T>::vector_one(b))[0]; }
virtual CrossingSet crossings(VectorT const &a, VectorT const &b) {
CrossingSet results(a.size() + b.size(), Crossings());
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(a), bounds(b));
for(unsigned i = 0; i < cull.size(); i++) {
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
unsigned jc = j + a.size();
Crossings cr = crossings(a[i], b[j]);
for(auto & k : cr) { k.a = i; k.b = jc; }
//Sort & add A-sorted crossings
sort_crossings(cr, i);
Crossings n(results[i].size() + cr.size());
std::merge(results[i].begin(), results[i].end(), cr.begin(), cr.end(), n.begin(), CrossingOrder(i));
results[i] = n;
//Sort & add B-sorted crossings
sort_crossings(cr, jc);
n.resize(results[jc].size() + cr.size());
std::merge(results[jc].begin(), results[jc].end(), cr.begin(), cr.end(), n.begin(), CrossingOrder(jc));
results[jc] = n;
}
}
return results;
}
};
void merge_crossings(Crossings &a, Crossings &b, unsigned i);
void offset_crossings(Crossings &cr, double a, double b);
Crossings reverse_ta(Crossings const &cr, std::vector<double> max);
Crossings reverse_tb(Crossings const &cr, unsigned split, std::vector<double> max);
CrossingSet reverse_ta(CrossingSet const &cr, unsigned split, std::vector<double> max);
CrossingSet reverse_tb(CrossingSet const &cr, unsigned split, std::vector<double> max);
void clean(Crossings &cr_a, Crossings &cr_b);
void delete_duplicates(Crossings &crs);
} // end namespace Geom
#endif
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|