1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/**
* \file
* \brief Abstract curve type
*
*//*
* Authors:
* MenTaLguY <mental@rydia.net>
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright 2007-2009 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_CURVE_H
#define LIB2GEOM_SEEN_CURVE_H
#include <vector>
#include <boost/operators.hpp>
#include <2geom/coord.h>
#include <2geom/point.h>
#include <2geom/interval.h>
#include <2geom/sbasis.h>
#include <2geom/d2.h>
#include <2geom/affine.h>
#include <2geom/intersection.h>
namespace Geom {
class PathSink;
typedef Intersection<> CurveIntersection;
/**
* @brief Abstract continuous curve on a plane defined on [0,1].
*
* Formally, a curve in 2Geom is defined as a function
* \f$\mathbf{C}: [0, 1] \to \mathbb{R}^2\f$
* (a function that maps the unit interval to points on a 2D plane). Its image (the set of points
* the curve passes through) will be denoted \f$\mathcal{C} = \mathbf{C}[ [0, 1] ]\f$.
* All curve types available in 2Geom are continuous and differentiable on their
* interior, e.g. \f$(0, 1)\f$. Sometimes the curve's image (value set) is referred to as the curve
* itself for simplicity, but keep in mind that it's not strictly correct.
*
* It is common to think of the parameter as time. The curve can then be interpreted as
* describing the position of some moving object from time \f$t=0\f$ to \f$t=1\f$.
* Because of this, the parameter is frequently called the time value.
*
* Some methods return pointers to newly allocated curves. They are expected to be freed
* by the caller when no longer used. Default implementations are provided for some methods.
*
* @ingroup Curves
*/
class Curve
: boost::equality_comparable<Curve>
{
public:
virtual ~Curve() {}
/// @name Evaluate the curve
/// @{
/** @brief Retrieve the start of the curve.
* @return The point corresponding to \f$\mathbf{C}(0)\f$. */
virtual Point initialPoint() const = 0;
/** Retrieve the end of the curve.
* @return The point corresponding to \f$\mathbf{C}(1)\f$. */
virtual Point finalPoint() const = 0;
/** @brief Check whether the curve has exactly zero length.
* @return True if the curve's initial point is exactly the same as its final point, and it contains
* no other points (its value set contains only one element). */
virtual bool isDegenerate() const = 0;
/// Check whether the curve is a line segment.
virtual bool isLineSegment() const { return false; }
/** @brief Get the interval of allowed time values.
* @return \f$[0, 1]\f$ */
virtual Interval timeRange() const {
Interval tr(0, 1);
return tr;
}
/** @brief Evaluate the curve at a specified time value.
* @param t Time value
* @return \f$\mathbf{C}(t)\f$ */
virtual Point pointAt(Coord t) const { return pointAndDerivatives(t, 0).front(); }
/** @brief Evaluate one of the coordinates at the specified time value.
* @param t Time value
* @param d The dimension to evaluate
* @return The specified coordinate of \f$\mathbf{C}(t)\f$ */
virtual Coord valueAt(Coord t, Dim2 d) const { return pointAt(t)[d]; }
/** @brief Evaluate the function at the specified time value. Allows curves to be used
* as functors. */
virtual Point operator() (Coord t) const { return pointAt(t); }
/** @brief Evaluate the curve and its derivatives.
* This will return a vector that contains the value of the curve and the specified number
* of derivatives. However, the returned vector might contain less elements than specified
* if some derivatives do not exist.
* @param t Time value
* @param n The number of derivatives to compute
* @return Vector of at most \f$n+1\f$ elements of the form \f$[\mathbf{C}(t),
\mathbf{C}'(t), \mathbf{C}''(t), \ldots]\f$ */
virtual std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const = 0;
/// @}
/// @name Change the curve's endpoints
/// @{
/** @brief Change the starting point of the curve.
* After calling this method, it is guaranteed that \f$\mathbf{C}(0) = \mathbf{p}\f$,
* and the curve is still continuous. The precise new shape of the curve varies with curve
* type.
* @param p New starting point of the curve */
virtual void setInitial(Point const &v) = 0;
/** @brief Change the ending point of the curve.
* After calling this method, it is guaranteed that \f$\mathbf{C}(0) = \mathbf{p}\f$,
* and the curve is still continuous. The precise new shape of the curve varies
* with curve type.
* @param p New ending point of the curve */
virtual void setFinal(Point const &v) = 0;
/// @}
/// @name Compute the bounding box
/// @{
/** @brief Quickly compute the curve's approximate bounding box.
* The resulting rectangle is guaranteed to contain all points belonging to the curve,
* but it might not be the smallest such rectangle. This method is usually fast.
* @return A rectangle that contains all points belonging to the curve. */
virtual Rect boundsFast() const = 0;
/** @brief Compute the curve's exact bounding box.
* This method can be dramatically slower than boundsFast() depending on the curve type.
* @return The smallest possible rectangle containing all of the curve's points. */
virtual Rect boundsExact() const = 0;
/** @brief Expand the given rectangle to include the transformed curve,
* assuming it already contains its initial point.
* @param bbox[in,out] bbox The rectangle to expand; it is assumed to already contain (initialPoint() * transform).
* @param transform The transform to apply to the curve before taking its bounding box. */
virtual void expandToTransformed(Rect &bbox, Affine const &transform) const = 0;
// I have no idea what the 'deg' parameter is for, so this is undocumented for now.
virtual OptRect boundsLocal(OptInterval const &i, unsigned deg) const = 0;
/** @brief Compute the bounding box of a part of the curve.
* Since this method returns the smallest possible bounding rectangle of the specified portion,
* it can also be rather slow.
* @param a An interval specifying a part of the curve, or nothing.
* If \f$[0, 1] \subseteq a\f$, then the bounding box for the entire curve
* is calculated.
* @return The smallest possible rectangle containing all points in \f$\mathbf{C}[a]\f$,
* or nothing if the supplied interval is empty. */
OptRect boundsLocal(OptInterval const &a) const { return boundsLocal(a, 0); }
/// @}
/// @name Create new curves based on this one
/// @{
/** @brief Create an exact copy of this curve.
* @return Pointer to a newly allocated curve, identical to the original */
virtual Curve *duplicate() const = 0;
/** @brief Transform this curve by an affine transformation.
* Because of this method, all curve types must be closed under affine
* transformations.
* @param m Affine describing the affine transformation */
void transform(Affine const &m) {
*this *= m;
}
virtual void operator*=(Translate const &tr) { *this *= Affine(tr); }
virtual void operator*=(Scale const &s) { *this *= Affine(s); }
virtual void operator*=(Rotate const &r) { *this *= Affine(r); }
virtual void operator*=(HShear const &hs) { *this *= Affine(hs); }
virtual void operator*=(VShear const &vs) { *this *= Affine(vs); }
virtual void operator*=(Zoom const &z) { *this *= Affine(z); }
virtual void operator*=(Affine const &m) = 0;
/** @brief Create a curve transformed by an affine transformation.
* This method returns a new curve instead modifying the existing one.
* @param m Affine describing the affine transformation
* @return Pointer to a new, transformed curve */
virtual Curve *transformed(Affine const &m) const {
Curve *ret = duplicate();
ret->transform(m);
return ret;
}
/** @brief Create a curve that corresponds to a part of this curve.
* For \f$a > b\f$, the returned portion will be reversed with respect to the original.
* The returned curve will always be of the same type.
* @param a Beginning of the interval specifying the portion of the curve
* @param b End of the interval
* @return New curve \f$\mathbf{D}\f$ such that:
* - \f$\mathbf{D}(0) = \mathbf{C}(a)\f$
* - \f$\mathbf{D}(1) = \mathbf{C}(b)\f$
* - \f$\mathbf{D}[ [0, 1] ] = \mathbf{C}[ [a?b] ]\f$,
* where \f$[a?b] = [\min(a, b), \max(a, b)]\f$ */
virtual Curve *portion(Coord a, Coord b) const = 0;
/** @brief A version of that accepts an Interval. */
Curve *portion(Interval const &i) const { return portion(i.min(), i.max()); }
/** @brief Create a reversed version of this curve.
* The result corresponds to <code>portion(1, 0)</code>, but this method might be faster.
* @return Pointer to a new curve \f$\mathbf{D}\f$ such that
* \f$\forall_{x \in [0, 1]} \mathbf{D}(x) = \mathbf{C}(1-x)\f$ */
virtual Curve *reverse() const { return portion(1, 0); }
/** @brief Create a derivative of this curve.
* It's best to think of the derivative in physical terms: if the curve describes
* the position of some object on the plane from time \f$t=0\f$ to \f$t=1\f$ as said in the
* introduction, then the curve's derivative describes that object's speed at the same times.
* The second derivative refers to its acceleration, the third to jerk, etc.
* @return New curve \f$\mathbf{D} = \mathbf{C}'\f$. */
virtual Curve *derivative() const = 0;
/// @}
/// @name Advanced operations
/// @{
/** @brief Compute a time value at which the curve comes closest to a specified point.
* The first value with the smallest distance is returned if there are multiple such points.
* @param p Query point
* @param a Minimum time value to consider
* @param b Maximum time value to consider; \f$a < b\f$
* @return \f$q \in [a, b]: ||\mathbf{C}(q) - \mathbf{p}|| =
\inf(\{r \in \mathbb{R} : ||\mathbf{C}(r) - \mathbf{p}||\})\f$ */
virtual Coord nearestTime( Point const& p, Coord a = 0, Coord b = 1 ) const;
/** @brief A version that takes an Interval. */
Coord nearestTime(Point const &p, Interval const &i) const {
return nearestTime(p, i.min(), i.max());
}
/** @brief Compute time values at which the curve comes closest to a specified point.
* @param p Query point
* @param a Minimum time value to consider
* @param b Maximum time value to consider; \f$a < b\f$
* @return Vector of points closest and equally far away from the query point */
virtual std::vector<Coord> allNearestTimes( Point const& p, Coord from = 0,
Coord to = 1 ) const;
/** @brief A version that takes an Interval. */
std::vector<Coord> allNearestTimes(Point const &p, Interval const &i) {
return allNearestTimes(p, i.min(), i.max());
}
/** @brief Compute the arc length of this curve.
* For a curve \f$\mathbf{C}(t) = (C_x(t), C_y(t))\f$, arc length is defined for 2D curves as
* \f[ \ell = \int_{0}^{1} \sqrt { [C_x'(t)]^2 + [C_y'(t)]^2 }\, \text{d}t \f]
* In other words, we divide the curve into infinitely small linear segments
* and add together their lengths. Of course we can't subdivide the curve into
* infinitely many segments on a computer, so this method returns an approximation.
* Not that there is usually no closed form solution to such integrals, so this
* method might be slow.
* @param tolerance Maximum allowed error
* @return Total distance the curve's value travels on the plane when going from 0 to 1 */
virtual Coord length(Coord tolerance=0.01) const;
/** @brief Computes time values at which the curve intersects an axis-aligned line.
* @param v The coordinate of the line
* @param d Which axis the coordinate is on. X means a vertical line, Y a horizontal line. */
virtual std::vector<Coord> roots(Coord v, Dim2 d) const = 0;
/** @brief Compute the partial winding number of this curve.
* The partial winding number is equal to the difference between the number
* of roots at which the curve goes in the +Y direction and the number of roots
* at which the curve goes in the -Y direction. This method is mainly useful
* for implementing path winding calculation. It will ignore roots which
* are local maxima on the Y axis.
* @param p Point where the winding number should be determined
* @return Winding number contribution at p */
virtual int winding(Point const &p) const;
/// Compute intersections with another curve.
virtual std::vector<CurveIntersection> intersect(Curve const &other, Coord eps = EPSILON) const;
/// Compute intersections of this curve with itself.
virtual std::vector<CurveIntersection> intersectSelf(Coord eps = EPSILON) const;
/** @brief Compute a vector tangent to the curve.
* This will return an unit vector (a Point with length() equal to 1) that denotes a vector
* tangent to the curve. This vector is defined as
* \f$ \mathbf{v}(t) = \frac{\mathbf{C}'(t)}{||\mathbf{C}'(t)||} \f$. It is pointed
* in the direction of increasing \f$t\f$, at the specified time value. The method uses
* l'Hopital's rule when the derivative is zero. A zero vector is returned if no non-zero
* derivative could be found.
* @param t Time value
* @param n The maximum order of derivative to consider
* @return Unit tangent vector \f$\mathbf{v}(t)\f$ */
virtual Point unitTangentAt(Coord t, unsigned n = 3) const;
/** @brief Convert the curve to a symmetric power basis polynomial.
* Symmetric power basis polynomials (S-basis for short) are numerical representations
* of curves with excellent numerical properties. Most high level operations provided by 2Geom
* are implemented in terms of S-basis operations, so every curve has to provide a method
* to convert it to an S-basis polynomial on two variables. See SBasis class reference
* for more information. */
virtual D2<SBasis> toSBasis() const = 0;
/// @}
/// @name Miscellaneous
/// @{
/** Return the number of independent parameters required to represent all variations
* of this curve. For example, for Bezier curves it returns the curve's order
* multiplied by 2. */
virtual int degreesOfFreedom() const { return 0;}
/** @brief Test equality of two curves.
* Equality means that for any time value, the evaluation of either curve will yield
* the same value. This means non-degenerate curves are not equal to their reverses.
* Note that this tests for exact equality.
* @return True if the curves are identical, false otherwise */
bool operator==(Curve const &c) const { return _equalTo(c); }
/** @brief Test whether two curves are approximately the same. */
virtual bool isNear(Curve const &c, Coord precision) const = 0;
/** @brief Feed the curve to a PathSink */
virtual void feed(PathSink &sink, bool moveto_initial) const;
/// @}
protected:
virtual bool _equalTo(Curve const &c) const = 0;
};
inline
Coord nearest_time(Point const& p, Curve const& c) {
return c.nearestTime(p);
}
// for make benefit glorious library of Boost Pointer Container
inline
Curve *new_clone(Curve const &c) {
return c.duplicate();
}
} // end namespace Geom
#endif // _2GEOM_CURVE_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|