1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  
     | 
    
      /**
 * \file
 * \brief  Elliptical arc curve
 *
 *//*
 * Authors:
 *    MenTaLguY <mental@rydia.net>
 *    Marco Cecchetti <mrcekets at gmail.com>
 *    Krzysztof KosiĆski <tweenk.pl@gmail.com>
 * 
 * Copyright 2007-2009 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */
#ifndef LIB2GEOM_SEEN_ELLIPTICAL_ARC_H
#define LIB2GEOM_SEEN_ELLIPTICAL_ARC_H
#include <algorithm>
#include <2geom/affine.h>
#include <2geom/angle.h>
#include <2geom/bezier-curve.h>
#include <2geom/curve.h>
#include <2geom/ellipse.h>
#include <2geom/sbasis-curve.h>  // for non-native methods
#include <2geom/utils.h>
namespace Geom 
{
class EllipticalArc : public Curve
{
public:
    /** @brief Creates an arc with all variables set to zero. */
    EllipticalArc()
        : _initial_point(0,0)
        , _final_point(0,0)
        , _large_arc(false)
    {}
    /** @brief Create a new elliptical arc.
     * @param ip Initial point of the arc
     * @param r Rays of the ellipse as a point
     * @param rot Angle of rotation of the X axis of the ellipse in radians
     * @param large If true, the large arc is chosen (always >= 180 degrees), otherwise
     *              the smaller arc is chosen
     * @param sweep If true, the clockwise arc is chosen, otherwise the counter-clockwise
     *              arc is chosen
     * @param fp Final point of the arc */
    EllipticalArc( Point const &ip, Point const &r,
                   Coord rot_angle, bool large_arc, bool sweep,
                   Point const &fp
                 )
        : _initial_point(ip)
        , _final_point(fp)
        , _ellipse(0, 0, r[X], r[Y], rot_angle)
        , _angles(0, 0, sweep)
        , _large_arc(large_arc)
    {
        _updateCenterAndAngles();
    }
    /// Create a new elliptical arc, giving the ellipse's rays as separate coordinates.
    EllipticalArc( Point const &ip, Coord rx, Coord ry,
                   Coord rot_angle, bool large_arc, bool sweep,
                   Point const &fp
                 )
        : _initial_point(ip)
        , _final_point(fp)
        , _ellipse(0, 0, rx, ry, rot_angle)
        , _angles(0, 0, sweep)
        , _large_arc(large_arc)
    {
        _updateCenterAndAngles();
    }
    /// @name Retrieve basic information
    /// @{
    /** @brief Get a coordinate of the elliptical arc's center.
     * @param d The dimension to retrieve
     * @return The selected coordinate of the center */
    Coord center(Dim2 d) const { return _ellipse.center(d); }
    /** @brief Get the arc's center
     * @return The arc's center, situated on the intersection of the ellipse's rays */
    Point center() const { return _ellipse.center(); }
    /** @brief Get one of the ellipse's rays
     * @param d Dimension to retrieve
     * @return The selected ray of the ellipse */
    Coord ray(Dim2 d) const { return _ellipse.ray(d); }
    /** @brief Get both rays as a point
     * @return Point with X equal to the X ray and Y to Y ray */
    Point rays() const { return _ellipse.rays(); }
    /** @brief Get the defining ellipse's rotation
     * @return Angle between the +X ray of the ellipse and the +X axis */
    Angle rotationAngle() const {
        return _ellipse.rotationAngle();
    }
    /** @brief Whether the arc is larger than half an ellipse.
     * @return True if the arc is larger than \f$\pi\f$, false otherwise */
    bool largeArc() const { return _large_arc; }
    /** @brief Whether the arc turns clockwise
     * @return True if the arc makes a clockwise turn when going from initial to final
     *         point, false otherwise */
    bool sweep() const { return _angles.sweep(); }
    Angle initialAngle() const { return _angles.initialAngle(); }
    Angle finalAngle() const { return _angles.finalAngle(); }
    /// @}
    /// @name Modify parameters
    /// @{
    /// Change all of the arc's parameters.
    void set( Point const &ip, double rx, double ry,
              double rot_angle, bool large_arc, bool sweep,
              Point const &fp
            )
    {
        _initial_point = ip;
        _final_point = fp;
        _ellipse.setRays(rx, ry);
        _ellipse.setRotationAngle(rot_angle);
        _angles.setSweep(sweep);
        _large_arc = large_arc;
        _updateCenterAndAngles();
    }
    /// Change all of the arc's parameters.
    void set( Point const &ip, Point const &r,
              Angle rot_angle, bool large_arc, bool sweep,
              Point const &fp
            )
    {
        _initial_point = ip;
        _final_point = fp;
        _ellipse.setRays(r);
        _ellipse.setRotationAngle(rot_angle);
        _angles.setSweep(sweep);
        _large_arc = large_arc;
        _updateCenterAndAngles();
    }
    /** @brief Change the initial and final point in one operation.
     * This method exists because modifying any of the endpoints causes rather costly
     * recalculations of the center and extreme angles.
     * @param ip New initial point
     * @param fp New final point */
    void setEndpoints(Point const &ip, Point const &fp) {
        _initial_point = ip;
        _final_point = fp;
        _updateCenterAndAngles();
    }
    /// @}
    /// @name Evaluate the arc as a function
    /// @{
    /** Check whether the arc contains the given angle
     * @param t The angle to check
     * @return True if the arc contains the angle, false otherwise */
    bool containsAngle(Angle angle) const { return _angles.contains(angle); }
    /** @brief Evaluate the arc at the specified angular coordinate
     * @param t Angle
     * @return Point corresponding to the given angle */
    Point pointAtAngle(Coord t) const;
    /** @brief Evaluate one of the arc's coordinates at the specified angle
     * @param t Angle
     * @param d The dimension to retrieve
     * @return Selected coordinate of the arc at the specified angle */
    Coord valueAtAngle(Coord t, Dim2 d) const;
    /// Compute the curve time value corresponding to the given angular value.
    Coord timeAtAngle(Angle a) const { return _angles.timeAtAngle(a); }
    /// Compute the angular domain value corresponding to the given time value.
    Angle angleAt(Coord t) const { return _angles.angleAt(t); }
    /** @brief Compute the amount by which the angle parameter changes going from start to end.
     * This has range \f$(-2\pi, 2\pi)\f$ and thus cannot be represented as instance
     * of the class Angle. Add this to the initial angle to obtain the final angle. */
    Coord sweepAngle() const { return _angles.sweepAngle(); }
    /** @brief Get the elliptical angle spanned by the arc.
     * This is basically the absolute value of sweepAngle(). */
    Coord angularExtent() const { return _angles.extent(); }
    /// Get the angular interval of the arc.
    AngleInterval angularInterval() const { return _angles; }
    /// Evaluate the arc in the curve domain, i.e. \f$[0, 1]\f$.
    Point pointAt(Coord t) const override;
    /// Evaluate a single coordinate on the arc in the curve domain.
    Coord valueAt(Coord t, Dim2 d) const override;
    /** @brief Compute a transform that maps the unit circle to the arc's ellipse.
     * Each ellipse can be interpreted as a translated, scaled and rotate unit circle.
     * This function returns the transform that maps the unit circle to the arc's ellipse.
     * @return Transform from unit circle to the arc's ellipse */
    Affine unitCircleTransform() const {
        Affine result = _ellipse.unitCircleTransform();
        return result;
    }
    /** @brief Compute a transform that maps the arc's ellipse to the unit circle. */
    Affine inverseUnitCircleTransform() const {
        Affine result = _ellipse.inverseUnitCircleTransform();
        return result;
    }
    /// @}
    /// @name Deal with degenerate ellipses.
    /// @{
    /** @brief Check whether both rays are nonzero.
     * If they are not, the arc is represented as a line segment instead. */
    bool isChord() const {
        return ray(X) == 0 || ray(Y) == 0;
    }
    /** @brief Get the line segment connecting the arc's endpoints.
     * @return A linear segment with initial and final point corresponding to those of the arc. */
    LineSegment chord() const { return LineSegment(_initial_point, _final_point); }
    /// @}
    // implementation of overloads goes here
    Point initialPoint() const override { return _initial_point; }
    Point finalPoint() const override { return _final_point; }
    Curve* duplicate() const override { return new EllipticalArc(*this); }
    void setInitial(Point const &p) override {
        _initial_point = p;
        _updateCenterAndAngles();
    }
    void setFinal(Point const &p) override {
        _final_point = p;
        _updateCenterAndAngles();
    }
    bool isDegenerate() const override {
        return _initial_point == _final_point;
    }
    bool isLineSegment() const override { return isChord(); }
    Rect boundsFast() const override {
        return boundsExact();
    }
    Rect boundsExact() const override;
    void expandToTransformed(Rect &bbox, Affine const &transform) const override;
    // TODO: native implementation of the following methods
    OptRect boundsLocal(OptInterval const &i, unsigned int deg) const override {
        return SBasisCurve(toSBasis()).boundsLocal(i, deg);
    }
    std::vector<double> roots(double v, Dim2 d) const override;
#ifdef HAVE_GSL
    std::vector<double> allNearestTimes( Point const& p, double from = 0, double to = 1 ) const override;
    double nearestTime( Point const& p, double from = 0, double to = 1 ) const override {
        if ( are_near(ray(X), ray(Y)) && are_near(center(), p) ) {
            return from;
        }
        return allNearestTimes(p, from, to).front();
    }
#endif
    std::vector<CurveIntersection> intersect(Curve const &other, Coord eps=EPSILON) const override;
    int degreesOfFreedom() const override { return 7; }
    Curve *derivative() const override;
    using Curve::operator*=;
    void operator*=(Translate const &tr) override;
    void operator*=(Scale const &s) override;
    void operator*=(Rotate const &r) override;
    void operator*=(Zoom const &z) override;
    void operator*=(Affine const &m) override;
    std::vector<Point> pointAndDerivatives(Coord t, unsigned int n) const override;
    D2<SBasis> toSBasis() const override;
    Curve *portion(double f, double t) const override;
    Curve *reverse() const override;
    bool isNear(Curve const &other, Coord precision) const override;
    void feed(PathSink &sink, bool moveto_initial) const override;
    int winding(Point const &p) const override;
protected:
    bool _equalTo(Curve const &c) const override;
private:
    void _updateCenterAndAngles();
    std::vector<ShapeIntersection> _filterIntersections(std::vector<ShapeIntersection> &&xs, bool is_first) const;
    bool _validateIntersection(ShapeIntersection &xing, bool is_first) const;
    std::vector<ShapeIntersection> _intersectSameEllipse(EllipticalArc const *other) const;
    Point _initial_point, _final_point;
    Ellipse _ellipse;
    AngleInterval _angles;
    bool _large_arc;
}; // end class EllipticalArc
// implemented in elliptical-arc-from-sbasis.cpp
/** @brief Fit an elliptical arc to an SBasis fragment.
 * @relates EllipticalArc */
bool arc_from_sbasis(EllipticalArc &ea, D2<SBasis> const &in,
                     double tolerance = EPSILON, unsigned num_samples = 20);
/** @brief Debug output for elliptical arcs.
 * @relates EllipticalArc */
std::ostream &operator<<(std::ostream &out, EllipticalArc const &ea);
} // end namespace Geom
#endif // LIB2GEOM_SEEN_ELLIPTICAL_ARC_H
/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
 
     |