1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/**
* \file
* \brief Simple closed interval class
*//*
* Copyright 2007 Michael Sloan <mgsloan@gmail.com>
*
* Original Rect/Range code by:
* Lauris Kaplinski <lauris@kaplinski.com>
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* bulia byak <buliabyak@users.sf.net>
* MenTaLguY <mental@rydia.net>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, output to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_INTERVAL_H
#define LIB2GEOM_SEEN_INTERVAL_H
#include <boost/none.hpp>
#include <boost/operators.hpp>
#include <2geom/coord.h>
#include <2geom/math-utils.h>
#include <2geom/generic-interval.h>
#include <2geom/int-interval.h>
namespace Geom {
/**
* @brief Range of real numbers that is never empty.
*
* Intervals are closed ranges \f$[a, b]\f$, which means they include their endpoints.
* To use them as open ranges, you can use the interiorContains() methods.
*
* @ingroup Primitives
*/
class Interval
: public GenericInterval<Coord>
{
using Base = GenericInterval<Coord>;
public:
/// @name Create intervals.
/// @{
/** @brief Create an interval that contains only zero. */
constexpr Interval() = default;
/** @brief Create an interval that contains a single point. */
explicit constexpr Interval(Coord u) : Base(u) {}
/** @brief Create an interval that contains all points between @c u and @c v. */
constexpr Interval(Coord u, Coord v) : Base(u, v) {}
/** @brief Convert from integer interval */
constexpr Interval(IntInterval const &i) : Base(i.min(), i.max()) {}
constexpr Interval(Base const &b) : Base(b) {}
/** @brief Create an interval containing a range of values.
* The resulting interval will contain all values from the given range.
* The return type of iterators must be convertible to Coord. The given range
* must not be empty. For potentially empty ranges, see OptInterval.
* @param start Beginning of the range
* @param end End of the range
* @return Interval that contains all values from [start, end). */
template <typename InputIterator>
static Interval from_range(InputIterator start, InputIterator end) {
return Base::from_range(start, end);
}
/** @brief Create an interval from a C-style array of values it should contain. */
static Interval from_array(Coord const *c, unsigned n) {
return Base::from_array(c, n);
}
/// @}
/// @name Inspect contained values.
/// @{
/// Check whether both endpoints are finite.
bool isFinite() const {
return std::isfinite(min()) && std::isfinite(max());
}
/** @brief Map the interval [0,1] onto this one.
* This method simply performs 1D linear interpolation between endpoints. */
constexpr Coord valueAt(Coord t) const {
return lerp(t, min(), max());
}
/** @brief Compute a time value that maps to the given value.
* The supplied value does not need to be in the interval for this method to work. */
constexpr Coord timeAt(Coord v) const {
return (v - min()) / extent();
}
/// Find closest time in [0,1] that maps to the given value. */
constexpr Coord nearestTime(Coord v) const {
if (v <= min()) return 0;
if (v >= max()) return 1;
return timeAt(v);
}
/// @}
/// @name Test coordinates and other intervals for inclusion.
/// @{
/** @brief Check whether the interior of the interval includes this number.
* Interior means all numbers in the interval except its ends. */
constexpr bool interiorContains(Coord val) const { return min() < val && val < max(); }
/** @brief Check whether the interior of the interval includes the given interval.
* Interior means all numbers in the interval except its ends. */
constexpr bool interiorContains(Interval const &val) const { return min() < val.min() && val.max() < max(); }
/// Check whether the number is contained in the union of the interior and the lower boundary.
constexpr bool lowerContains(Coord val) const { return min() <= val && val < max(); }
/// Check whether the given interval is contained in the union of the interior and the lower boundary.
constexpr bool lowerContains(Interval const &val) const { return min() <= val.min() && val.max() < max(); }
/// Check whether the number is contained in the union of the interior and the upper boundary.
constexpr bool upperContains(Coord val) { return min() < val && val <= max(); }
/// Check whether the given interval is contained in the union of the interior and the upper boundary.
constexpr bool upperContains(Interval const &val) const { return min() < val.min() && val.max() <= max(); }
/** @brief Check whether the interiors of the intervals have any common elements.
* A single point in common is not considered an intersection. */
constexpr bool interiorIntersects(Interval const &val) const {
return std::max(min(), val.min()) < std::min(max(), val.max());
}
/// @}
/// @name Operators
/// @{
// IMPL: ScalableConcept
/** @brief Scale an interval */
constexpr Interval &operator*=(Coord s) {
using std::swap;
_b[0] *= s;
_b[1] *= s;
if (s < 0) swap(_b[0], _b[1]);
return *this;
}
/** @brief Scale an interval by the inverse of the specified value */
constexpr Interval &operator/=(Coord s) {
using std::swap;
_b[0] /= s;
_b[1] /= s;
if (s < 0) swap(_b[0], _b[1]);
return *this;
}
/** @brief Multiply two intervals.
* Product is defined as the set of points that can be obtained by multiplying
* any value from the second operand by any value from the first operand:
* \f$S = \{x \in A, y \in B: x * y\}\f$ */
constexpr Interval &operator*=(Interval const &o) {
// TODO implement properly
Coord mn = min(), mx = max();
expandTo(mn * o.min());
expandTo(mn * o.max());
expandTo(mx * o.min());
expandTo(mx * o.max());
return *this;
}
constexpr bool operator==(IntInterval const &ii) const {
return min() == Coord(ii.min()) && max() == Coord(ii.max());
}
constexpr bool operator==(Interval const &other) const {
return Base::operator==(other);
}
/// @}
/// @name Rounding to integer values
/// @{
/** @brief Return the smallest integer interval which contains this one. */
IntInterval roundOutwards() const {
return IntInterval(floor(min()), ceil(max()));
}
/** @brief Return the largest integer interval which is contained in this one. */
OptIntInterval roundInwards() const {
IntCoord u = ceil(min()), v = floor(max());
if (u > v) return {};
return IntInterval(u, v);
}
/// @}
};
/**
* @brief Range of real numbers that can be empty.
* @ingroup Primitives
*/
class OptInterval
: public GenericOptInterval<Coord>
{
using Base = GenericOptInterval<Coord>;
public:
using Base::Base;
using Base::operator==;
using Base::operator!=;
constexpr OptInterval(Base const &b) : Base(b) {}
/** @brief Promote from IntInterval. */
constexpr OptInterval(IntInterval const &i) : Base(Interval(i)) {}
/** @brief Promote from OptIntInterval. */
constexpr OptInterval(OptIntInterval const &i) {
if (i) *this = Interval(*i);
}
};
// functions required for Python bindings
inline Interval unify(Interval const &a, Interval const &b) {
return a | b;
}
inline OptInterval intersect(Interval const &a, Interval const &b) {
return a & b;
}
} // namespace Geom
// Structured binding support
template <> struct std::tuple_size<Geom::Interval> : std::integral_constant<size_t, 2> {};
template <size_t I> struct std::tuple_element<I, Geom::Interval> { using type = Geom::Coord; };
// Hash support
template <> struct std::hash<Geom::Interval> : std::hash<Geom::GenericInterval<Geom::Coord>> {};
#endif // LIB2GEOM_SEEN_INTERVAL_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|