1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/**
* \file
* \brief Linear fragment function class
*
* Authors:
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* Michael Sloan <mgsloan@gmail.com>
*
* Copyright (C) 2006-2007 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef SEEN_LINEAR_OF_H
#define SEEN_LINEAR_OF_H
#include <2geom/interval.h>
#include <2geom/math-utils.h>
namespace Geom{
template <typename T>
inline T lerp(double t, T a, T b) { return a*(1-t) + b*t; }
template <typename T>
class SBasisOf;
template <typename T>
class HatOf{
public:
HatOf () {}
HatOf(T d) :d(d) {}
operator T() const { return d; }
T d;
};
template <typename T>
class TriOf{
public:
TriOf () {}
TriOf(double d) :d(d) {}
operator T() const { return d; }
T d;
};
//--------------------------------------------------------------------------
#ifdef USE_SBASIS_OF
template <typename T>
class LinearOf;
typedef Geom::LinearOf<double> Linear;
#endif
//--------------------------------------------------------------------------
template <typename T>
class LinearOf{
public:
T a[2];
LinearOf() {}
LinearOf(T aa, T b) {a[0] = aa; a[1] = b;}
//LinearOf(double aa, double b) {a[0] = T(aa); a[1] = T(b);}
LinearOf(HatOf<T> h, TriOf<T> t) {
a[0] = T(h) - T(t)/2;
a[1] = T(h) + T(t)/2;
}
LinearOf(HatOf<T> h) {
a[0] = T(h);
a[1] = T(h);
}
unsigned input_dim(){return T::input_dim() + 1;}
T operator[](const int i) const {
assert(i >= 0);
assert(i < 2);
return a[i];
}
T& operator[](const int i) {
assert(i >= 0);
assert(i < 2);
return a[i];
}
//IMPL: FragmentConcept
typedef T output_type;
inline bool isZero() const { return a[0].isZero() && a[1].isZero(); }
inline bool isConstant() const { return a[0] == a[1]; }
inline bool isFinite() const { return std::isfinite(a[0]) && std::isfinite(a[1]); }
inline T at0() const { return a[0]; }
inline T at1() const { return a[1]; }
inline T valueAt(double t) const { return lerp(t, a[0], a[1]); }
inline T operator()(double t) const { return valueAt(t); }
//defined in sbasis.h
inline SBasisOf<T> toSBasis() const;
//This is specific for T=double!!
inline OptInterval bounds_exact() const { return Interval(a[0], a[1]); }
inline OptInterval bounds_fast() const { return bounds_exact(); }
inline OptInterval bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
operator TriOf<T>() const {
return a[1] - a[0];
}
operator HatOf<T>() const {
return (a[1] + a[0])/2;
}
};
template <>
unsigned LinearOf<double>::input_dim(){return 1;}
template <>
inline OptInterval LinearOf<double>::bounds_exact() const { return Interval(a[0], a[1]); }
template <>
inline OptInterval LinearOf<double>::bounds_fast() const { return bounds_exact(); }
template <>
inline OptInterval LinearOf<double>::bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
template <>
inline bool LinearOf<double>::isZero() const { return a[0]==0 && a[1]==0; }
template <typename T>
inline LinearOf<T> reverse(LinearOf<T> const &a) { return LinearOf<T>(a[1], a[0]); }
//IMPL: AddableConcept
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, LinearOf<T> const & b) {
return LinearOf<T>(a[0] + b[0], a[1] + b[1]);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, LinearOf<T> const & b) {
return LinearOf<T>(a[0] - b[0], a[1] - b[1]);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, LinearOf<T> const & b) {
a[0] += b[0]; a[1] += b[1];
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, LinearOf<T> const & b) {
a[0] -= b[0]; a[1] -= b[1];
return a;
}
//IMPL: OffsetableConcept
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0] + b, a[1] + b);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0] - b, a[1] - b);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, double b) {
a[0] += b; a[1] += b;
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, double b) {
a[0] -= b; a[1] -= b;
return a;
}
/*
//We can in fact offset in coeff ring T...
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0] + b, a[1] + b);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0] - b, a[1] - b);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, T b) {
a[0] += b; a[1] += b;
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, T b) {
a[0] -= b; a[1] -= b;
return a;
}
*/
//IMPL: boost::EqualityComparableConcept
template <typename T>
inline bool operator==(LinearOf<T> const & a, LinearOf<T> const & b) {
return a[0] == b[0] && a[1] == b[1];
}
template <typename T>
inline bool operator!=(LinearOf<T> const & a, LinearOf<T> const & b) {
return a[0] != b[0] || a[1] != b[1];
}
//IMPL: ScalableConcept
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const &a) {
return LinearOf<T>(-a[0], -a[1]);
}
template <typename T>
inline LinearOf<T> operator*(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0]*b, a[1]*b);
}
template <typename T>
inline LinearOf<T> operator/(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0]/b, a[1]/b);
}
template <typename T>
inline LinearOf<T> operator*=(LinearOf<T> & a, double b) {
a[0] *= b; a[1] *= b;
return a;
}
template <typename T>
inline LinearOf<T> operator/=(LinearOf<T> & a, double b) {
a[0] /= b; a[1] /= b;
return a;
}
/*
//We can in fact rescale in coeff ring T... (but not divide!)
template <typename T>
inline LinearOf<T> operator*(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0]*b, a[1]*b);
}
template <typename T>
inline LinearOf<T> operator/(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0]/b, a[1]/b);
}
template <typename T>
inline LinearOf<T> operator*=(LinearOf<T> & a, T b) {
a[0] *= b; a[1] *= b;
return a;
}
*/
};
#endif //SEEN_LINEAR_OF_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|