1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/**
* @file
* @brief LinearN fragment function class
*//*
* Authors:
* JF Barraud <jf.barraud@gmail.com>
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* Michael Sloan <mgsloan@gmail.com>
*
* Copyright (C) 2006-2007 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef SEEN_LINEARN_H
#define SEEN_LINEARN_H
#include <2geom/interval.h>
#include <2geom/math-utils.h>
#include <2geom/linear.h> //for conversion purpose ( + lerp() )
#include <iostream>
namespace Geom{
//TODO: define this only once!! (see linear.h)
inline double lerpppp(double t, double a, double b) { return a*(1-t) + b*t; }
template<unsigned n>
class SBasisN;
template<unsigned n>
class LinearN{
public:
double a[1<<n];// 1<<n is 2^n
LinearN() {
for (unsigned i=0; i < (1<<n); i++){
a[i] = 0.;
}
}
LinearN(double aa[]) {
for (unsigned i=0; i < (1<<n); i++){
a[i] = aa[i];
}
}
LinearN(double c) {
for (unsigned i=0; i<(1<<n); i++){
a[i] = c;
}
}
LinearN(LinearN<n-1> const &aa, LinearN<n-1> const &b, unsigned var=0) {
// for (unsigned i=0; i<(1<<n-1); i++){
// a[i] = aa[i];
// a[i+(1<<(n-1))] = b[i];
// }
unsigned mask = (1<<var)-1;
for (unsigned i=0; i < (1<<(n-1)); i++){
unsigned low_i = i & mask, high_i = i & ~mask;
unsigned idx0 = (high_i<<1)|low_i;
unsigned idx1 = (high_i<<1)|(1<<var)|low_i;
a[idx0] = aa[i];
a[idx1] = b[i];
}
}
double operator[](const int i) const {
assert( i >= 0 );
assert( i < (1<<n) );
return a[i];
}
double& operator[](const int i) {
assert(i >= 0);
assert(i < (1<<n) );
return a[i];
}
//IMPL: FragmentConcept
typedef double output_type;
unsigned input_dim() const {return n;}
inline bool isZero() const {
for (unsigned i=0; i < (1<<n); i++){
if (a[i] != 0) return false;
}
return true; }
inline bool isConstant() const {
for (unsigned i=1; i < (1<<n); i++){
if (a[i] != a[0]) return false;
}
return true; }
inline bool isConstant(unsigned var) const {
unsigned mask = (1<<var)-1;
for (unsigned i=0; i < (1<<(n-1)); i++){
unsigned low_i = i & mask, high_i = i & ~mask;
unsigned idx0 = (high_i<<1)|low_i;
unsigned idx1 = (high_i<<1)|(1<<var)|low_i;
if (a[idx0] != a[idx1]) return false;
}
return true;
}
inline bool isFinite() const {
for (unsigned i=0; i < (1<<n); i++){
if ( !std::isfinite(a[i]) ) return false;
}
return true; }
//value if k-th variable is set to 0.
inline LinearN<n-1> at0(unsigned k=0) const {
LinearN<n-1> res;
unsigned mask = (1<<k)-1;
for (unsigned i=0; i < (1<<(n-1)); i++){
unsigned low_i = i & mask, high_i = i & ~mask;
unsigned idx = (high_i<<1)|low_i;
res[i] = a[idx];
}
return res;
}
//value if k-th variable is set to 1.
inline LinearN<n-1> at1(unsigned k=0) const {
LinearN<n-1> res;
for (unsigned i=0; i < (1<<(n-1)); i++){
unsigned mask = (1<<k)-1;
unsigned low_i = i & mask, high_i = i & ~mask;
unsigned idx = (high_i<<1)|(1<<k)|low_i;
res[i] = a[idx];
}
return res;
}
inline double atCorner(unsigned k) const {
assert( k < (1<<n) );
return a[k];
}
inline double atCorner(double t[]) const {
unsigned k=0;
for(unsigned i=0; i<n; i++){
if (t[i] == 1.) k = k | (1<<i);
else assert( t[i] == 0. );
}
return atCorner(k);
}
inline LinearN<n-1> partialEval(double t, unsigned var=0 ) const {
LinearN<n-1> res;
res = at0(var)*(1-t) + at1(var)*t;
return res;
}
//fixed and flags are used for recursion.
inline double valueAt(double t[], unsigned fixed=0, unsigned flags=0 ) const {
if (fixed == n) {
return a[flags];
}else{
double a0 = valueAt(t, fixed+1, flags);
double a1 = valueAt(t, fixed+1, flags|(1<<fixed));
return lerpppp( t[fixed], a0, a1 );
}
}
inline double operator()(double t[]) const { return valueAt(t); }
//defined in sbasisN.h
inline SBasisN<n> toSBasisN() const;
inline OptInterval bounds_exact() const {
double min=a[0], max=a[0];
for (unsigned i=1; i < (1<<n); i++){
if (a[i] < min) min = a[i];
if (a[i] > max) max = a[i];
}
return Interval(min, max);
}
inline OptInterval bounds_fast() const { return bounds_exact(); }
//inline OptInterval bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
};
//LinearN<0> are doubles. Specialize them out.
template<>
class LinearN<0>{
public:
double d;
LinearN () {}
LinearN(double d) :d(d) {}
operator double() const { return d; }
double operator[](const int i) const {assert (i==0); return d;}
double& operator[](const int i) {assert (i==0); return d;}
typedef double output_type;
unsigned input_dim() const {return 0;}
inline bool isZero() const { return d==0; }
inline bool isConstant() const { return true; }
inline bool isFinite() const { return std::isfinite(d); }
};
//LinearN<1> are usual Linear. Allow conversion.
Linear toLinear(LinearN<1> f){
return Linear(f[0],f[1]);
}
//inline Linear reverse(Linear const &a) { return Linear(a[1], a[0]); }
//IMPL: AddableConcept
template<unsigned n>
inline LinearN<n> operator+(LinearN<n> const & a, LinearN<n> const & b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] + b[i];
}
return res;
}
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const & a, LinearN<n> const & b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] - b[i];
}
return res;
}
template<unsigned n>
inline LinearN<n>& operator+=(LinearN<n> & a, LinearN<n> const & b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] += b[i];
}
return a;
}
template<unsigned n>
inline LinearN<n>& operator-=(LinearN<n> & a, LinearN<n> const & b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] -= b[i];
}
return a;
}
//IMPL: OffsetableConcept
template<unsigned n>
inline LinearN<n> operator+(LinearN<n> const & a, double b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] + b;
}
return res;
}
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const & a, double b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] - b;
}
return res;
}
template<unsigned n>
inline LinearN<n>& operator+=(LinearN<n> & a, double b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] += b;
}
return a;
}
template<unsigned n>
inline LinearN<n>& operator-=(LinearN<n> & a, double b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] -= b;
}
return a;
}
//IMPL: boost::EqualityComparableConcept
template<unsigned n>
inline bool operator==(LinearN<n> const & a, LinearN<n> const & b) {
for (unsigned i=0; i < (1<<n); i++){
if (a[i] != b[i]) return false;
}
return true;
}
template<unsigned n>
inline bool operator!=(LinearN<n> const & a, LinearN<n> const & b) {
return !(a==b);
}
//IMPL: ScalableConcept
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const &a) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = -a[i];
}
return res;
}
template<unsigned n>
inline LinearN<n> operator*(LinearN<n> const & a, double b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] * b;
}
return res;
}
template<unsigned n>
inline LinearN<n> operator/(LinearN<n> const & a, double b) {
LinearN<n> res;
for (unsigned i=0; i < (1<<n); i++){
res[i] = a[i] / b;
}
return res;
}
template<unsigned n>
inline LinearN<n> operator*=(LinearN<n> & a, double b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] *= b;
}
return a;
}
template<unsigned n>
inline LinearN<n> operator/=(LinearN<n> & a, double b) {
for (unsigned i=0; i < (1<<n); i++){
a[i] /= b;
}
return a;
}
template<unsigned n>
void setToVariable(LinearN<n> &x, unsigned k){;
x = LinearN<n>(0.);
unsigned mask = 1<<k;
for (unsigned i=0; i < (1<<n); i++){
if ( i & mask ) x[i] = 1;
}
}
template<unsigned n>
inline std::ostream &operator<< (std::ostream &out_file, const LinearN<n> &bo) {
out_file << "{";
for (unsigned i=0; i < (1<<n); i++){
out_file << bo[i]<<(i == (1<<n)-1 ? "}" : ",");
}
return out_file;
}
}
#endif //SEEN_LINEAR_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|