1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
|
/** @file
* @brief Path - a sequence of contiguous curves
*//*
* Authors:
* MenTaLguY <mental@rydia.net>
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright 2007-2014 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_PATH_H
#define LIB2GEOM_SEEN_PATH_H
#include <cstddef>
#include <iterator>
#include <algorithm>
#include <iostream>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include <boost/operators.hpp>
#include <boost/ptr_container/ptr_vector.hpp>
#include <2geom/intersection.h>
#include <2geom/curve.h>
#include <2geom/bezier-curve.h>
#include <2geom/transforms.h>
namespace Geom {
class Path;
class ConvexHull;
namespace PathInternal {
typedef boost::ptr_vector<Curve> Sequence;
struct PathData {
Sequence curves;
OptRect fast_bounds;
};
template <typename P>
class BaseIterator
: public boost::random_access_iterator_helper
< BaseIterator<P>
, Curve const
, std::ptrdiff_t
, Curve const *
, Curve const &
>
{
protected:
BaseIterator(P &p, unsigned i) : path(&p), index(i) {}
// default copy, default assign
typedef BaseIterator<P> Self;
public:
BaseIterator() : path(NULL), index(0) {}
bool operator<(BaseIterator const &other) const {
return path == other.path && index < other.index;
}
bool operator==(BaseIterator const &other) const {
return path == other.path && index == other.index;
}
Curve const &operator*() const {
return (*path)[index];
}
Self &operator++() {
++index;
return *this;
}
Self &operator--() {
--index;
return *this;
}
Self &operator+=(std::ptrdiff_t d) {
index += d;
return *this;
}
Self &operator-=(std::ptrdiff_t d) {
index -= d;
return *this;
}
std::ptrdiff_t operator-(Self const &other) const {
assert(path == other.path);
return (std::ptrdiff_t)index - (std::ptrdiff_t)other.index;
}
private:
P *path;
unsigned index;
friend class ::Geom::Path;
};
}
/** @brief Generalized time value in the path.
*
* This class exists because when mapping the range of multiple curves onto the same interval
* as the curve index, we lose some precision. For instance, a path with 16 curves will
* have 4 bits less precision than a path with 1 curve. If you need high precision results
* in long paths, either use this class and related methods instead of the standard methods
* pointAt(), nearestTime() and so on, or use curveAt() to first obtain the curve, then
* call the method again to obtain a high precision result.
*
* @ingroup Paths */
struct PathTime
: boost::totally_ordered<PathTime>
{
typedef PathInternal::Sequence::size_type size_type;
Coord t; ///< Time value in the curve
size_type curve_index; ///< Index of the curve in the path
PathTime() : t(0), curve_index(0) {}
PathTime(size_type idx, Coord tval) : t(tval), curve_index(idx) {}
bool operator<(PathTime const &other) const {
if (curve_index < other.curve_index) return true;
if (curve_index == other.curve_index) {
return t < other.t;
}
return false;
}
bool operator==(PathTime const &other) const {
return curve_index == other.curve_index && t == other.t;
}
/// Convert times at or beyond 1 to 0 on the next curve.
void normalizeForward(size_type path_size) {
if (t >= 1) {
curve_index = (curve_index + 1) % path_size;
t = 0;
}
}
/// Convert times at or before 0 to 1 on the previous curve.
void normalizeBackward(size_type path_size) {
if (t <= 0) {
curve_index = (curve_index - 1) % path_size;
t = 1;
}
}
Coord asFlatTime() const { return curve_index + t; }
};
inline std::ostream &operator<<(std::ostream &os, PathTime const &pos) {
os << pos.curve_index << ": " << format_coord_nice(pos.t);
return os;
}
/** @brief Contiguous subset of the path's parameter domain.
* This is a directed interval, which allows one to specify any contiguous subset
* of the path's domain, including subsets that wrap around the initial point
* of the path.
* @ingroup Paths */
class PathInterval {
public:
typedef PathInternal::Sequence::size_type size_type;
/** @brief Default interval.
* Default-constructed PathInterval includes only the initial point of the initial segment. */
PathInterval();
/** @brief Construct an interval in the path's parameter domain.
* @param from Initial time
* @param to Final time
* @param cross_start If true, the interval will proceed from the initial to final
* time through the initial point of the path, wrapping around the closing segment;
* otherwise it will not wrap around the closing segment.
* @param path_size Size of the path to which this interval applies, required
* to clean up degenerate cases */
PathInterval(PathTime const &from, PathTime const &to, bool cross_start, size_type path_size);
/// Get the time value of the initial point.
PathTime const &initialTime() const { return _from; }
/// Get the time value of the final point.
PathTime const &finalTime() const { return _to; }
PathTime const &from() const { return _from; }
PathTime const &to() const { return _to; }
/// Check whether the interval has only one point.
bool isDegenerate() const { return _from == _to; }
/// True if the interval goes in the direction of decreasing time values.
bool reverse() const { return _reverse; }
/// True if the interior of the interval contains the initial point of the path.
bool crossesStart() const { return _cross_start; }
/// Test a path time for inclusion.
bool contains(PathTime const &pos) const;
/// Get a time at least @a min_dist away in parameter space from the ends.
/// If no such time exists, the middle point is returned.
PathTime inside(Coord min_dist = EPSILON) const;
/// Select one of two intervals with given endpoints by parameter direction.
static PathInterval from_direction(PathTime const &from, PathTime const &to,
bool reversed, size_type path_size);
/// Select one of two intervals with given endpoints by whether it includes the initial point.
static PathInterval from_start_crossing(PathTime const &from, PathTime const &to,
bool cross_start, size_type path_size) {
PathInterval result(from, to, cross_start, path_size);
return result;
}
size_type pathSize() const { return _path_size; }
size_type curveCount() const;
private:
PathTime _from, _to;
size_type _path_size;
bool _cross_start, _reverse;
};
/// Create an interval in the direction of increasing time value.
/// @relates PathInterval
inline PathInterval forward_interval(PathTime const &from, PathTime const &to,
PathInterval::size_type path_size)
{
PathInterval result = PathInterval::from_direction(from, to, false, path_size);
return result;
}
/// Create an interval in the direction of decreasing time value.
/// @relates PathInterval
inline PathInterval backward_interval(PathTime const &from, PathTime const &to,
PathInterval::size_type path_size)
{
PathInterval result = PathInterval::from_direction(from, to, true, path_size);
return result;
}
/// Output an interval in the path's domain.
/// @relates PathInterval
inline std::ostream &operator<<(std::ostream &os, PathInterval const &ival) {
os << "PathInterval[";
if (ival.crossesStart()) {
os << ival.from() << " -> 0: 0.0 -> " << ival.to();
} else {
os << ival.from() << " -> " << ival.to();
}
os << "]";
return os;
}
typedef Intersection<PathTime> PathIntersection;
template <>
struct ShapeTraits<Path> {
typedef PathTime TimeType;
typedef PathInterval IntervalType;
typedef Path AffineClosureType;
typedef PathIntersection IntersectionType;
};
/** @brief Stores information about the extremum points on a path, with respect
* to one of the coordinate axes.
* @relates Path::extrema()
*/
struct PathExtrema {
/** Points with the minimum and maximum value of a coordinate. */
Point min_point, max_point;
/** Directions in which the OTHER coordinates change at the extremum points.
*
* - equals +1.0 if the other coordinate increases,
* - equals 0.0 if the other coordinate is constant (e.g., for an axis-aligned segment),
* - equals -1.0 if the other coordinate decreases.
*/
float glance_direction_at_min, glance_direction_at_max;
/** Path times corresponding to minimum and maximum points. */
PathTime min_time, max_time;
};
/** @brief Sequence of contiguous curves, aka spline.
*
* Path represents a sequence of contiguous curves, also known as a spline.
* It corresponds to a "subpath" in SVG terminology. It can represent both
* open and closed subpaths. The final point of each curve is exactly
* equal to the initial point of the next curve.
*
* The path always contains a linear closing segment that connects
* the final point of the last "real" curve to the initial point of the
* first curve. This way the curves form a closed loop even for open paths.
* If the closing segment has nonzero length and the path is closed, it is
* considered a normal part of the path data. There are three distinct sets
* of end iterators one can use to iterate over the segments:
*
* - Iterating between @a begin() and @a end() will iterate over segments
* which are part of the path.
* - Iterating between @a begin() and @a end_closed()
* will always iterate over a closed loop of segments.
* - Iterating between @a begin() and @a end_open() will always skip
* the final linear closing segment.
*
* If the final point of the last "real" segment coincides exactly with the initial
* point of the first segment, the closing segment will be absent from both
* [begin(), end_open()) and [begin(), end_closed()).
*
* Normally, an exception will be thrown when you try to insert a curve
* that makes the path non-continuous. If you are working with unsanitized
* curve data, you can call setStitching(true), which will insert line segments
* to make the path continuous.
*
* Internally, Path uses copy-on-write data. This is done for two reasons: first,
* copying a Curve requires calling a virtual function, so it's a little more expensive
* that normal copying; and second, it reduces the memory cost of copying the path.
* Therefore you can return Path and PathVector from functions without worrying
* about temporary copies.
*
* Note that this class cannot represent arbitrary shapes, which may contain holes.
* To do that, use PathVector, which is more generic.
*
* It's not very convenient to create a Path directly. To construct paths more easily,
* use PathBuilder.
*
* @ingroup Paths */
class Path
: boost::equality_comparable< Path >
{
public:
typedef PathInternal::PathData PathData;
typedef PathInternal::Sequence Sequence;
typedef PathInternal::BaseIterator<Path> iterator;
typedef PathInternal::BaseIterator<Path const> const_iterator;
typedef Sequence::size_type size_type;
typedef Sequence::difference_type difference_type;
class ClosingSegment : public LineSegment {
public:
ClosingSegment() : LineSegment() {}
ClosingSegment(Point const &p1, Point const &p2) : LineSegment(p1, p2) {}
Curve *duplicate() const override { return new ClosingSegment(*this); }
Curve *reverse() const override { return new ClosingSegment((*this)[1], (*this)[0]); }
};
class StitchSegment : public LineSegment {
public:
StitchSegment() : LineSegment() {}
StitchSegment(Point const &p1, Point const &p2) : LineSegment(p1, p2) {}
Curve *duplicate() const override { return new StitchSegment(*this); }
Curve *reverse() const override { return new StitchSegment((*this)[1], (*this)[0]); }
};
// Path(Path const &other) - use default copy constructor
/// Construct an empty path starting at the specified point.
explicit Path(Point const &p = Point())
: _data(new PathData())
, _closing_seg(new ClosingSegment(p, p))
, _closed(false)
, _exception_on_stitch(true)
{
_data->curves.push_back(_closing_seg);
}
/// Construct a path containing a range of curves.
template <typename Iter>
Path(Iter first, Iter last, bool closed = false, bool stitch = false)
: _data(new PathData())
, _closed(closed)
, _exception_on_stitch(!stitch)
{
for (Iter i = first; i != last; ++i) {
_data->curves.push_back(i->duplicate());
}
if (!_data->curves.empty()) {
_closing_seg = new ClosingSegment(_data->curves.back().finalPoint(),
_data->curves.front().initialPoint());
} else {
_closing_seg = new ClosingSegment();
}
_data->curves.push_back(_closing_seg);
}
/// Create a path from a rectangle.
explicit Path(Rect const &r);
/// Create a path from a convex hull.
explicit Path(ConvexHull const &);
/// Create a path from a circle, using two elliptical arcs.
explicit Path(Circle const &c);
/// Create a path from an ellipse, using two elliptical arcs.
explicit Path(Ellipse const &e);
virtual ~Path() {}
// Path &operator=(Path const &other) - use default assignment operator
/** @brief Swap contents with another path
* @todo Add noexcept specifiers for C++11 */
void swap(Path &other) noexcept {
using std::swap;
swap(other._data, _data);
swap(other._closing_seg, _closing_seg);
swap(other._closed, _closed);
swap(other._exception_on_stitch, _exception_on_stitch);
}
/** @brief Swap contents of two paths.
* @relates Path */
friend inline void swap(Path &a, Path &b) noexcept { a.swap(b); }
/** @brief Access a curve by index */
Curve const &operator[](size_type i) const { return _data->curves[i]; }
/** @brief Access a curve by index */
Curve const &at(size_type i) const { return _data->curves.at(i); }
/** @brief Access the first curve in the path.
* Since the curve always contains at least a degenerate closing segment,
* it is always safe to use this method. */
Curve const &front() const { return _data->curves.front(); }
/// Alias for front().
Curve const &initialCurve() const { return _data->curves.front(); }
/** @brief Access the last curve in the path. */
Curve const &back() const { return back_default(); }
Curve const &back_open() const {
if (empty()) return _data->curves.back();
return _data->curves[_data->curves.size() - 2];
}
Curve const &back_closed() const {
return _closing_seg->isDegenerate()
? _data->curves[_data->curves.size() - 2]
: _data->curves[_data->curves.size() - 1];
}
Curve const &back_default() const {
return _includesClosingSegment()
? back_closed()
: back_open();
}
Curve const &finalCurve() const { return back_default(); }
const_iterator begin() const { return const_iterator(*this, 0); }
const_iterator end() const { return end_default(); }
const_iterator end_default() const { return const_iterator(*this, size_default()); }
const_iterator end_open() const { return const_iterator(*this, size_open()); }
const_iterator end_closed() const { return const_iterator(*this, size_closed()); }
iterator begin() { return iterator(*this, 0); }
iterator end() { return end_default(); }
iterator end_default() { return iterator(*this, size_default()); }
iterator end_open() { return iterator(*this, size_open()); }
iterator end_closed() { return iterator(*this, size_closed()); }
/// Size without the closing segment, even if the path is closed.
size_type size_open() const { return _data->curves.size() - 1; }
/** @brief Size with the closing segment, if it makes a difference.
* If the closing segment is degenerate, i.e. its initial and final points
* are exactly equal, then it is not included in this size. */
size_type size_closed() const {
return _closing_seg->isDegenerate() ? _data->curves.size() - 1 : _data->curves.size();
}
/// Natural size of the path.
size_type size_default() const {
return _includesClosingSegment() ? size_closed() : size_open();
}
/// Natural size of the path.
size_type size() const { return size_default(); }
size_type max_size() const { return _data->curves.max_size() - 1; }
/** @brief Check whether path is empty.
* The path is empty if it contains only the closing segment, which according
* to the continuity invariant must be degenerate. Note that unlike standard
* containers, two empty paths are not necessarily identical, because the
* degenerate closing segment may be at a different point, affecting the operation
* of methods such as appendNew(). */
bool empty() const { return (_data->curves.size() == 1); }
/// Check whether the path is closed.
bool closed() const { return _closed; }
/** @brief Set whether the path is closed.
* When closing a path where the last segment can be represented as a closing
* segment, the last segment will be removed. When opening a path, the closing
* segment will be erased. This means that closing and then opening a path
* will not always give back the original path. */
void close(bool closed = true);
/** @brief Remove all curves from the path.
* The initial and final points of the closing segment are set to (0,0).
* The stitching flag remains unchanged. */
void clear();
/** @brief Get the approximate bounding box.
* The rectangle returned by this method will contain all the curves, but it's not
* guaranteed to be the smallest possible one */
OptRect boundsFast() const;
/** @brief Get a tight-fitting bounding box.
* This will return the smallest possible axis-aligned rectangle containing
* all the curves in the path. */
OptRect boundsExact() const;
Piecewise<D2<SBasis> > toPwSb() const;
/// Test paths for exact equality.
bool operator==(Path const &other) const;
/// Apply a transform to each curve.
template <typename T>
Path &operator*=(T const &tr) {
BOOST_CONCEPT_ASSERT((TransformConcept<T>));
_unshare();
for (std::size_t i = 0; i < _data->curves.size(); ++i) {
_data->curves[i] *= tr;
}
return *this;
}
template <typename T>
friend Path operator*(Path const &path, T const &tr) {
BOOST_CONCEPT_ASSERT((TransformConcept<T>));
Path result(path);
result *= tr;
return result;
}
/** @brief Get the allowed range of time values.
* @return Values for which pointAt() and valueAt() yield valid results. */
Interval timeRange() const;
/** Get the curve at the specified time value.
* @param t Time value
* @param rest Optional storage for the corresponding time value in the curve */
Curve const &curveAt(Coord t, Coord *rest = NULL) const;
/// Get the closing segment of the path.
LineSegment const &closingSegment() const { return *_closing_seg; }
/** @brief Get the point at the specified time value.
* Note that this method has reduced precision with respect to calling pointAt()
* directly on the curve. If you want high precision results, use the version
* that takes a PathTime parameter.
*
* Allowed time values range from zero to the number of curves; you can retrieve
* the allowed range of values with timeRange(). */
Point pointAt(Coord t) const;
/// Get one coordinate (X or Y) at the specified time value.
Coord valueAt(Coord t, Dim2 d) const;
/// Get the curve at the specified path time.
Curve const &curveAt(PathTime const &pos) const;
/// Get the point at the specified path time.
Point pointAt(PathTime const &pos) const;
/// Get one coordinate at the specified path time.
Coord valueAt(PathTime const &pos, Dim2 d) const;
Point operator()(Coord t) const { return pointAt(t); }
/** @brief Find the extrema of the specified coordinate.
*
* Returns a PathExtrema struct describing "witness" points on the path
* where the specified coordinate attains its minimum and maximum values.
*/
PathExtrema extrema(Dim2 d) const;
/// Compute intersections with axis-aligned line.
std::vector<PathTime> roots(Coord v, Dim2 d) const;
/// Compute intersections with another path.
std::vector<PathIntersection> intersect(Path const &other, Coord precision = EPSILON) const;
/// Compute intersections of the path with itself.
std::vector<PathIntersection> intersectSelf(Coord precision = EPSILON) const;
/** @brief Determine the winding number at the specified point.
*
* The winding number is the number of full turns made by a ray that connects the passed
* point and the path's value (i.e. the result of the pointAt() method) as the time increases
* from 0 to the maximum valid value. Positive numbers indicate turns in the direction
* of increasing angles.
*
* Winding numbers are often used as the definition of what is considered "inside"
* the shape. Typically points with either nonzero winding or odd winding are
* considered to be inside the path. */
int winding(Point const &p) const;
std::vector<Coord> allNearestTimes(Point const &p, Coord from, Coord to) const;
std::vector<Coord> allNearestTimes(Point const &p) const {
return allNearestTimes(p, 0, size_default());
}
PathTime nearestTime(Point const &p, Coord *dist = NULL) const;
std::vector<Coord> nearestTimePerCurve(Point const &p) const;
std::vector<Point> nodes() const;
void appendPortionTo(Path &p, Coord f, Coord t) const;
/** @brief Append a subset of this path to another path.
* An extra stitching segment will be inserted if the start point of the portion
* and the final point of the target path do not match exactly.
* The closing segment of the target path will be modified. */
void appendPortionTo(Path &p, PathTime const &from, PathTime const &to, bool cross_start = false) const {
PathInterval ival(from, to, cross_start, size_closed());
appendPortionTo(p, ival, std::nullopt, std::nullopt);
}
/** @brief Append a subset of this path to another path.
* This version allows you to explicitly pass a PathInterval. */
void appendPortionTo(Path &p, PathInterval const &ival) const {
appendPortionTo(p, ival, std::nullopt, std::nullopt);
}
/** @brief Append a subset of this path to another path, specifying endpoints.
* This method is for use in situations where endpoints of the portion segments
* have to be set exactly, for instance when computing Boolean operations. */
void appendPortionTo(Path &p, PathInterval const &ival,
std::optional<Point> const &p_from, std::optional<Point> const &p_to) const;
Path portion(Coord f, Coord t) const {
Path ret;
ret.close(false);
appendPortionTo(ret, f, t);
return ret;
}
Path portion(Interval const &i) const { return portion(i.min(), i.max()); }
/** @brief Get a subset of the current path with full precision.
* When @a from is larger (later in the path) than @a to, the returned portion
* will be reversed. If @a cross_start is true, the portion will be reversed
* and will cross the initial point of the path. Therefore, when @a from is larger
* than @a to and @a cross_start is true, the returned portion will not be reversed,
* but will "wrap around" the end of the path. */
Path portion(PathTime const &from, PathTime const &to, bool cross_start = false) const {
Path ret;
ret.close(false);
appendPortionTo(ret, from, to, cross_start);
return ret;
}
/** @brief Get a subset of the current path with full precision.
* This version allows you to explicitly pass a PathInterval. */
Path portion(PathInterval const &ival) const {
Path ret;
ret.close(false);
appendPortionTo(ret, ival);
return ret;
}
/** @brief Obtain a reversed version of the current path.
* The final point of the current path will become the initial point
* of the reversed path, unless it is closed and has a non-degenerate
* closing segment. In that case, the new initial point will be the final point
* of the last "real" segment. */
Path reversed() const;
void insert(iterator pos, Curve const &curve);
template <typename Iter>
void insert(iterator pos, Iter first, Iter last) {
_unshare();
Sequence::iterator seq_pos(seq_iter(pos));
Sequence source;
for (; first != last; ++first) {
source.push_back(first->duplicate());
}
do_update(seq_pos, seq_pos, source);
}
void erase(iterator pos);
void erase(iterator first, iterator last);
// erase last segment of path
void erase_last() { erase(iterator(*this, size() - 1)); }
void start(Point const &p);
/** @brief Get the first point in the path. */
Point initialPoint() const { return (*_closing_seg)[1]; }
/** @brief Get the last point in the path.
* If the path is closed, this is always the same as the initial point. */
Point finalPoint() const { return (*_closing_seg)[_closed ? 1 : 0]; }
/** @brief Get the unit tangent vector at the start of the path,
* or the zero vector if undefined. */
Point initialUnitTangent() const {
for (auto const &curve : *this) {
if (!curve.isDegenerate()) {
return curve.unitTangentAt(0.0);
}
}
return Point();
}
/** @brief Get the unit tangent vector at the end of the path,
* or the zero vector if undefined. */
Point finalUnitTangent() const {
for (auto it = end(); it != begin();) {
--it;
if (!it->isDegenerate()) {
return it->unitTangentAt(1.0);
}
}
return Point();
}
void setInitial(Point const &p) {
_unshare();
_closed = false;
_data->curves.front().setInitial(p);
_closing_seg->setFinal(p);
}
void setFinal(Point const &p) {
_unshare();
_closed = false;
_data->curves[size_open() ? size_open() - 1 : 0].setFinal(p);
_closing_seg->setInitial(p);
}
/** @brief Add a new curve to the end of the path.
* This inserts the new curve right before the closing segment.
* The path takes ownership of the passed pointer, which should not be freed. */
void append(Curve *curve) {
_unshare();
stitchTo(curve->initialPoint());
do_append(curve);
}
void append(Curve const &curve) {
_unshare();
stitchTo(curve.initialPoint());
do_append(curve.duplicate());
}
void append(D2<SBasis> const &curve) {
_unshare();
stitchTo(Point(curve[X][0][0], curve[Y][0][0]));
do_append(new SBasisCurve(curve));
}
void append(Path const &other) {
replace(end_open(), other.begin(), other.end());
}
void replace(iterator replaced, Curve const &curve);
void replace(iterator first, iterator last, Curve const &curve);
void replace(iterator replaced, Path const &path);
void replace(iterator first, iterator last, Path const &path);
template <typename Iter>
void replace(iterator replaced, Iter first, Iter last) {
replace(replaced, replaced + 1, first, last);
}
template <typename Iter>
void replace(iterator first_replaced, iterator last_replaced, Iter first, Iter last) {
_unshare();
Sequence::iterator seq_first_replaced(seq_iter(first_replaced));
Sequence::iterator seq_last_replaced(seq_iter(last_replaced));
Sequence source;
for (; first != last; ++first) {
source.push_back(first->duplicate());
}
do_update(seq_first_replaced, seq_last_replaced, source);
}
/** @brief Append a new curve to the path.
*
* This family of methods will automatically use the current final point of the path
* as the first argument of the new curve's constructor. To call this method,
* you'll need to write e.g.:
* @code
path.template appendNew<CubicBezier>(control1, control2, end_point);
@endcode
* It is important to note that the coordinates passed to appendNew should be finite!
* If one of the coordinates is infinite, 2geom will throw a ContinuityError exception.
*/
template <typename CurveType, typename... Args>
void appendNew(Args&&... args) {
_unshare();
do_append(new CurveType(finalPoint(), std::forward<Args>(args)...));
}
/** @brief Reduce the closing segment to a point if it's shorter than precision.
* Do this by moving the final point. */
void snapEnds(Coord precision = EPSILON);
/// Append a stitching segment ending at the specified point.
void stitchTo(Point const &p);
/** @brief Return a copy of the path without degenerate curves, except possibly for a
* degenerate closing segment. */
Path withoutDegenerateCurves() const;
/** @brief Verify the continuity invariant.
* If the path is not contiguous, this will throw a CountinuityError. */
void checkContinuity() const;
/** @brief Enable or disable the throwing of exceptions when stitching discontinuities.
* Normally stitching will cause exceptions, but when you are working with unsanitized
* curve data, you can disable these exceptions. */
void setStitching(bool x) {
_exception_on_stitch = !x;
}
private:
static Sequence::iterator seq_iter(iterator const &iter) {
return iter.path->_data->curves.begin() + iter.index;
}
static Sequence::const_iterator seq_iter(const_iterator const &iter) {
return iter.path->_data->curves.begin() + iter.index;
}
// whether the closing segment is part of the path
bool _includesClosingSegment() const {
return _closed && !_closing_seg->isDegenerate();
}
void _unshare() {
// Called before every mutation.
// Ensure we have our own copy of curve data and reset cached values
if (_data.use_count() != 1) {
_data.reset(new PathData(*_data));
_closing_seg = static_cast<ClosingSegment*>(&_data->curves.back());
}
_data->fast_bounds = OptRect();
}
PathTime _factorTime(Coord t) const;
void stitch(Sequence::iterator first_replaced, Sequence::iterator last_replaced, Sequence &sequence);
void do_update(Sequence::iterator first, Sequence::iterator last, Sequence &source);
// n.b. takes ownership of curve object
void do_append(Curve *curve);
std::shared_ptr<PathData> _data;
ClosingSegment *_closing_seg;
bool _closed;
bool _exception_on_stitch;
}; // end class Path
Piecewise<D2<SBasis> > paths_to_pw(PathVector const &paths);
inline Coord nearest_time(Point const &p, Path const &c) {
PathTime pt = c.nearestTime(p);
return pt.curve_index + pt.t;
}
bool are_near(Path const &a, Path const &b, Coord precision = EPSILON);
/**
* @brief Find the first point where two paths diverge away from one another.
*
* If the two paths have a common starting point, the algorithm follows them for as long as the
* images of the paths coincide and finds the first point where they stop coinciding. Note that
* only the images of paths in the plane are compared, and not their parametrizations, so this
* is not a functional (parametric) coincidence. If you want to test parametric coincidence, use
* bool are_near(Path const&, Path const&, Coord) instead.
*
* The function returns the point where the traces of the two paths finally diverge up to the
* specified precision. If the traces (images) of the paths are nearly identical until the end,
* the returned point is their (almost) common endpoint. If however the image of one of the paths
* is completely contained in the image of the other path, the returned point is the endpoint of
* the shorter path.
*
* If the paths have different starting points, then the returned intersection has the special
* time values of -1.0 on both paths and the returned intersection point is the midpoint of the
* line segment connecting the two starting points.
*
* @param first The first path to follow; corresponds to .first in the return value.
* @param second The second path to follow; corresponds to .second in the return value.
* @param precision How close the paths' images need to be in order to be considered as overlapping.
* @return A path intersection specifying the point and path times where the two paths part ways.
*/
PathIntersection parting_point(Path const &first, Path const &second, Coord precision = EPSILON);
std::ostream &operator<<(std::ostream &out, Path const &path);
} // end namespace Geom
#endif // LIB2GEOM_SEEN_PATH_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|