1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/** @file
* @brief Cartesian point / 2D vector and related operations
*//*
* Authors:
* Michael G. Sloan <mgsloan@gmail.com>
* Nathan Hurst <njh@njhurst.com>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
*
* Copyright (C) 2006-2009 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_POINT_H
#define LIB2GEOM_SEEN_POINT_H
#include <cassert>
#include <iostream>
#include <iterator>
#include <tuple>
#include <boost/functional/hash.hpp>
#include <boost/operators.hpp>
#include <2geom/forward.h>
#include <2geom/coord.h>
#include <2geom/int-point.h>
#include <2geom/math-utils.h>
#include <2geom/utils.h>
namespace Geom {
class Point
: boost::additive< Point
, boost::totally_ordered< Point
, boost::multiplicative< Point, Coord
, boost::multiplicative< Point
, boost::multiplicative< Point, IntPoint
, MultipliableNoncommutative< Point, Affine
, MultipliableNoncommutative< Point, Translate
, MultipliableNoncommutative< Point, Rotate
, MultipliableNoncommutative< Point, Scale
, MultipliableNoncommutative< Point, HShear
, MultipliableNoncommutative< Point, VShear
, MultipliableNoncommutative< Point, Zoom
>>>>>>>>>>>> // base class chaining, see documentation for Boost.Operator
{
Coord _pt[2] = { 0, 0 };
public:
using D1Value = Coord;
using D1Reference = Coord &;
using D1ConstReference = Coord const &;
/// @name Create points
/// @{
/** Construct a point at the origin. */
constexpr Point() = default;
/** Construct a point from its coordinates. */
constexpr Point(Coord x, Coord y)
: _pt{ x, y }
{}
/** Construct from integer point. */
constexpr Point(IntPoint const &p)
: Point(p[X], p[Y])
{}
/** @brief Construct a point from its polar coordinates.
* The angle is specified in radians, in the mathematical convention (increasing
* counter-clockwise from +X). */
static Point polar(Coord angle, Coord radius) {
return polar(angle) * radius;
}
/** @brief Construct an unit vector from its angle.
* The angle is specified in radians, in the mathematical convention (increasing
* counter-clockwise from +X). */
static Point polar(Coord angle);
/// @}
/// @name Access the coordinates of a point
/// @{
Coord operator[](unsigned i) const { assert(i < 2); return _pt[i]; }
Coord &operator[](unsigned i) { assert(i < 2); return _pt[i]; }
constexpr Coord operator[](Dim2 d) const noexcept { return _pt[d]; }
constexpr Coord &operator[](Dim2 d) noexcept { return _pt[d]; }
constexpr Coord x() const noexcept { return _pt[X]; }
constexpr Coord &x() noexcept { return _pt[X]; }
constexpr Coord y() const noexcept { return _pt[Y]; }
constexpr Coord &y() noexcept { return _pt[Y]; }
// Structured binding support
template <size_t I> constexpr Coord get() const { static_assert(I < 2); return _pt[I]; }
template <size_t I> constexpr Coord &get() { static_assert(I < 2); return _pt[I]; }
/// @}
/// @name Vector operations
/// @{
/** @brief Compute the distance from origin.
* @return Length of the vector from origin to this point */
Coord length() const { return std::hypot(_pt[X], _pt[Y]); }
constexpr Coord lengthSq() const { return _pt[X] * _pt[X] + _pt[Y] * _pt[Y]; }
void normalize();
Point normalized() const {
auto ret = *this;
ret.normalize();
return ret;
}
/** @brief Return a point like this point but rotated -90 degrees.
* If the y axis grows downwards and the x axis grows to the
* right, then this is 90 degrees counter-clockwise. */
constexpr Point ccw() const {
return Point(_pt[Y], -_pt[X]);
}
/** @brief Return a point like this point but rotated +90 degrees.
* If the y axis grows downwards and the x axis grows to the
* right, then this is 90 degrees clockwise. */
constexpr Point cw() const {
return Point(-_pt[Y], _pt[X]);
}
/// @}
/// @name Vector-like arithmetic operations
/// @{
constexpr Point operator-() const {
return Point(-_pt[X], -_pt[Y]);
}
constexpr Point &operator+=(Point const &o) {
_pt[X] += o._pt[X];
_pt[Y] += o._pt[Y];
return *this;
}
constexpr Point &operator-=(Point const &o) {
_pt[X] -= o._pt[X];
_pt[Y] -= o._pt[Y];
return *this;
}
constexpr Point &operator*=(Coord s) {
for (auto &i : _pt) i *= s;
return *this;
}
constexpr Point &operator*=(Point const &o) {
_pt[X] *= o._pt[X];
_pt[Y] *= o._pt[Y];
return *this;
}
constexpr Point &operator*=(IntPoint const &o) {
_pt[X] *= o.x();
_pt[Y] *= o.y();
return *this;
}
constexpr Point &operator/=(Coord s) {
for (auto &i : _pt) i /= s;
return *this;
}
constexpr Point &operator/=(Point const &o) {
_pt[X] /= o._pt[X];
_pt[Y] /= o._pt[Y];
return *this;
}
constexpr Point &operator/=(IntPoint const &o) {
_pt[X] /= o.x();
_pt[Y] /= o.y();
return *this;
}
/// @}
/// @name Affine transformations
/// @{
Point &operator*=(Affine const &m);
// implemented in transforms.cpp
Point &operator*=(Translate const &t);
Point &operator*=(Scale const &s);
Point &operator*=(Rotate const &r);
Point &operator*=(HShear const &s);
Point &operator*=(VShear const &s);
Point &operator*=(Zoom const &z);
/// @}
/// @name Conversion to integer points
/// @{
/** @brief Round to nearest integer coordinates. */
IntPoint round() const {
return IntPoint(::round(_pt[X]), ::round(_pt[Y]));
}
/** @brief Round coordinates downwards. */
IntPoint floor() const {
return IntPoint(::floor(_pt[X]), ::floor(_pt[Y]));
}
/** @brief Round coordinates upwards. */
IntPoint ceil() const {
return IntPoint(::ceil(_pt[X]), ::ceil(_pt[Y]));
}
/// @}
/// @name Various utilities
/// @{
/** @brief Check whether both coordinates are finite. */
bool isFinite() const {
for (auto i : _pt) {
if (!std::isfinite(i)) {
return false;
}
}
return true;
}
/** @brief Check whether both coordinates are zero. */
constexpr bool isZero() const {
return _pt[X] == 0 && _pt[Y] == 0;
}
/** @brief Check whether the length of the vector is close to 1. */
bool isNormalized(Coord eps = EPSILON) const {
return are_near(length(), 1.0, eps);
}
/** @brief Equality operator.
* This tests for exact identity (as opposed to are_near()). Note that due to numerical
* errors, this test might return false even if the points should be identical. */
constexpr bool operator==(Point const &p) const {
return _pt[X] == p[X] && _pt[Y] == p[Y];
}
/** @brief Lexicographical ordering for points.
* Y coordinate is regarded as more significant. When sorting according to this
* ordering, the points will be sorted according to the Y coordinate, and within
* points with the same Y coordinate according to the X coordinate. */
constexpr bool operator<(Point const &p) const {
return _pt[Y] < p[Y] || (_pt[Y] == p[Y] && _pt[X] < p[X]);
}
/// @}
/** @brief Lexicographical ordering functor.
* @param d The dimension with higher significance */
template <Dim2 DIM> struct LexLess;
template <Dim2 DIM> struct LexGreater;
//template <Dim2 DIM, typename First = std::less<Coord>, typename Second = std::less<Coord> > LexOrder;
/** @brief Lexicographical ordering functor with runtime dimension. */
struct LexLessRt {
LexLessRt(Dim2 d) : dim(d) {}
inline bool operator()(Point const &a, Point const &b) const;
private:
Dim2 dim;
};
struct LexGreaterRt {
LexGreaterRt(Dim2 d) : dim(d) {}
inline bool operator()(Point const &a, Point const &b) const;
private:
Dim2 dim;
};
};
/** @brief Output operator for points.
* Prints out the coordinates.
* @relates Point */
std::ostream &operator<<(std::ostream &out, Point const &p);
template<> struct Point::LexLess<X> {
typedef std::less<Coord> Primary;
typedef std::less<Coord> Secondary;
typedef std::less<Coord> XOrder;
typedef std::less<Coord> YOrder;
bool operator()(Point const &a, Point const &b) const {
return a[X] < b[X] || (a[X] == b[X] && a[Y] < b[Y]);
}
};
template<> struct Point::LexLess<Y> {
typedef std::less<Coord> Primary;
typedef std::less<Coord> Secondary;
typedef std::less<Coord> XOrder;
typedef std::less<Coord> YOrder;
bool operator()(Point const &a, Point const &b) const {
return a[Y] < b[Y] || (a[Y] == b[Y] && a[X] < b[X]);
}
};
template<> struct Point::LexGreater<X> {
typedef std::greater<Coord> Primary;
typedef std::greater<Coord> Secondary;
typedef std::greater<Coord> XOrder;
typedef std::greater<Coord> YOrder;
bool operator()(Point const &a, Point const &b) const {
return a[X] > b[X] || (a[X] == b[X] && a[Y] > b[Y]);
}
};
template<> struct Point::LexGreater<Y> {
typedef std::greater<Coord> Primary;
typedef std::greater<Coord> Secondary;
typedef std::greater<Coord> XOrder;
typedef std::greater<Coord> YOrder;
bool operator()(Point const &a, Point const &b) const {
return a[Y] > b[Y] || (a[Y] == b[Y] && a[X] > b[X]);
}
};
inline bool Point::LexLessRt::operator()(Point const &a, Point const &b) const {
return dim ? Point::LexLess<Y>()(a, b) : Point::LexLess<X>()(a, b);
}
inline bool Point::LexGreaterRt::operator()(Point const &a, Point const &b) const {
return dim ? Point::LexGreater<Y>()(a, b) : Point::LexGreater<X>()(a, b);
}
/** @brief Compute the second (Euclidean) norm of @a p.
* This corresponds to the length of @a p. The result will not overflow even if
* \f$p_X^2 + p_Y^2\f$ is larger that the maximum value that can be stored
* in a <code>double</code>.
* @return \f$\sqrt{p_X^2 + p_Y^2}\f$
* @relates Point */
inline Coord L2(Point const &p) {
return p.length();
}
/** @brief Compute the square of the Euclidean norm of @a p.
* Warning: this can overflow where L2 won't.
* @return \f$p_X^2 + p_Y^2\f$
* @relates Point */
constexpr Coord L2sq(Point const &p) {
return p.lengthSq();
}
/** @brief Returns p * Geom::rotate_degrees(90), but more efficient.
*
* Angle direction in 2Geom: If you use the traditional mathematics convention that y
* increases upwards, then positive angles are anticlockwise as per the mathematics convention. If
* you take the common non-mathematical convention that y increases downwards, then positive angles
* are clockwise, as is common outside of mathematics.
*
* There is no function to rotate by -90 degrees: use -rot90(p) instead.
* @relates Point */
constexpr Point rot90(Point const &p) {
return Point(-p[Y], p[X]);
}
/** @brief Linear interpolation between two points.
* @param t Time value
* @param a First point
* @param b Second point
* @return Point on a line between a and b. The ratio of its distance from a
* and the distance between a and b will be equal to t.
* @relates Point */
inline Point lerp(Coord t, Point const &a, Point const &b) {
return (1 - t) * a + t * b;
}
/** @brief Return a point halfway between the specified ones.
* @relates Point */
inline Point middle_point(Point const &p1, Point const &p2) {
return lerp(0.5, p1, p2);
}
/** @brief Compute the dot product of a and b.
* Dot product can be interpreted as a measure of how parallel the vectors are.
* For perpendicular vectors, it is zero. For parallel ones, its absolute value is highest,
* and the sign depends on whether they point in the same direction (+) or opposite ones (-).
* @return \f$a \cdot b = a_X b_X + a_Y b_Y\f$.
* @relates Point */
constexpr Coord dot(Point const &a, Point const &b) {
return a[X] * b[X] + a[Y] * b[Y];
}
/** @brief Compute the 2D cross product.
* This is also known as "perp dot product". It will be zero for parallel vectors,
* and the absolute value will be highest for perpendicular vectors.
* @return \f$a \times b = a_X b_Y - a_Y b_X\f$.
* @relates Point*/
constexpr Coord cross(Point const &a, Point const &b)
{
// equivalent implementation:
// return dot(a, b.ccw());
return a[X] * b[Y] - a[Y] * b[X];
}
/// Compute the (Euclidean) distance between points.
/// @relates Point
inline Coord distance(Point const &a, Point const &b) {
return (a - b).length();
}
/// Compute the square of the distance between points.
/// @relates Point
inline Coord distanceSq(Point const &a, Point const &b) {
return L2sq(a - b);
}
//IMPL: NearConcept
/// Test whether two points are no further apart than some threshold.
/// @relates Point
inline bool are_near(Point const &a, Point const &b, double eps = EPSILON) {
// do not use an unqualified calls to distance before the empty
// specialization of iterator_traits is defined - see end of file
return are_near((a - b).length(), 0, eps);
}
/// Test whether the relative distance between two points is less than some threshold.
inline bool are_near_rel(Point const &a, Point const &b, double eps = EPSILON) {
return (a - b).length() <= eps * (a.length() + b.length()) / 2;
}
/// Test whether three points lie approximately on the same line.
/// @relates Point
inline bool are_collinear(Point const &p1, Point const &p2, Point const &p3,
double eps = EPSILON)
{
return are_near(cross(p1, p2) + cross(p2, p3) + cross(p3, p1), 0, eps);
}
Point unit_vector(Point const &a);
Coord L1(Point const &p);
Coord LInfty(Point const &p);
bool is_zero(Point const &p);
bool is_unit_vector(Point const &p, Coord eps = EPSILON);
double atan2(Point const &p);
double angle_between(Point const &a, Point const &b);
Point abs(Point const &b);
Point constrain_angle(Point const &A, Point const &B, unsigned n = 4, Point const &dir = {1, 0});
} // namespace Geom
// This is required to fix a bug in GCC 4.3.3 (and probably others) that causes the compiler
// to try to instantiate the iterator_traits template and fail. Probably it thinks that Point
// is an iterator and tries to use std::distance instead of Geom::distance.
namespace std {
template <> class iterator_traits<Geom::Point> {};
}
// Structured binding support
template <> struct std::tuple_size<Geom::Point> : std::integral_constant<size_t, 2> {};
template <size_t I> struct std::tuple_element<I, Geom::Point> { using type = Geom::Coord; };
// Hash support
template <> struct std::hash<Geom::Point>
{
size_t operator()(Geom::Point const &p) const noexcept {
size_t hash = 0;
boost::hash_combine(hash, p.x());
boost::hash_combine(hash, p.y());
return hash;
}
};
#endif // LIB2GEOM_SEEN_POINT_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|