1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/**
* \file
* \brief Polynomial in canonical (monomial) basis
*//*
* Authors:
* MenTaLguY <mental@rydia.net>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
* Rafał Siejakowski <rs@rs-math.net>
*
* Copyright 2007-2015 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_POLY_H
#define LIB2GEOM_SEEN_POLY_H
#include <assert.h>
#include <vector>
#include <iostream>
#include <algorithm>
#include <complex>
#include <2geom/coord.h>
#include <2geom/utils.h>
namespace Geom {
/** @brief Polynomial in canonical (monomial) basis.
* @ingroup Fragments */
class Poly : public std::vector<double>{
public:
// coeff; // sum x^i*coeff[i]
//unsigned size() const { return coeff.size();}
unsigned degree() const { return size()-1;}
//double operator[](const int i) const { return (*this)[i];}
//double& operator[](const int i) { return (*this)[i];}
Poly operator+(const Poly& p) const {
Poly result;
const unsigned out_size = std::max(size(), p.size());
const unsigned min_size = std::min(size(), p.size());
result.reserve(out_size);
for(unsigned i = 0; i < min_size; i++) {
result.push_back((*this)[i] + p[i]);
}
for(unsigned i = min_size; i < size(); i++)
result.push_back((*this)[i]);
for(unsigned i = min_size; i < p.size(); i++)
result.push_back(p[i]);
assert(result.size() == out_size);
return result;
}
Poly operator-(const Poly& p) const {
Poly result;
const unsigned out_size = std::max(size(), p.size());
const unsigned min_size = std::min(size(), p.size());
result.reserve(out_size);
for(unsigned i = 0; i < min_size; i++) {
result.push_back((*this)[i] - p[i]);
}
for(unsigned i = min_size; i < size(); i++)
result.push_back((*this)[i]);
for(unsigned i = min_size; i < p.size(); i++)
result.push_back(-p[i]);
assert(result.size() == out_size);
return result;
}
Poly operator-=(const Poly& p) {
const unsigned out_size = std::max(size(), p.size());
const unsigned min_size = std::min(size(), p.size());
resize(out_size);
for(unsigned i = 0; i < min_size; i++) {
(*this)[i] -= p[i];
}
for(unsigned i = min_size; i < out_size; i++)
(*this)[i] = -p[i];
return *this;
}
Poly operator-(const double k) const {
Poly result;
const unsigned out_size = size();
result.reserve(out_size);
for(unsigned i = 0; i < out_size; i++) {
result.push_back((*this)[i]);
}
result[0] -= k;
return result;
}
Poly operator-() const {
Poly result;
result.resize(size());
for(unsigned i = 0; i < size(); i++) {
result[i] = -(*this)[i];
}
return result;
}
Poly operator*(const double p) const {
Poly result;
const unsigned out_size = size();
result.reserve(out_size);
for(unsigned i = 0; i < out_size; i++) {
result.push_back((*this)[i]*p);
}
assert(result.size() == out_size);
return result;
}
// equivalent to multiply by x^terms, negative terms are disallowed
Poly shifted(unsigned const terms) const {
Poly result;
size_type const out_size = size() + terms;
result.reserve(out_size);
result.resize(terms, 0.0);
result.insert(result.end(), this->begin(), this->end());
assert(result.size() == out_size);
return result;
}
Poly operator*(const Poly& p) const;
template <typename T>
T eval(T x) const {
T r = 0;
for(int k = size()-1; k >= 0; k--) {
r = r*x + T((*this)[k]);
}
return r;
}
template <typename T>
T operator()(T t) const { return (T)eval(t);}
void normalize();
void monicify();
Poly() {}
Poly(const Poly& p) : std::vector<double>(p) {}
Poly(const double a) {push_back(a);}
public:
template <class T, class U>
void val_and_deriv(T x, U &pd) const {
pd[0] = back();
int nc = size() - 1;
int nd = pd.size() - 1;
for(unsigned j = 1; j < pd.size(); j++)
pd[j] = 0.0;
for(int i = nc -1; i >= 0; i--) {
int nnd = std::min(nd, nc-i);
for(int j = nnd; j >= 1; j--)
pd[j] = pd[j]*x + operator[](i);
pd[0] = pd[0]*x + operator[](i);
}
double cnst = 1;
for(int i = 2; i <= nd; i++) {
cnst *= i;
pd[i] *= cnst;
}
}
static Poly linear(double ax, double b) {
Poly p;
p.push_back(b);
p.push_back(ax);
return p;
}
};
inline Poly operator*(double a, Poly const & b) { return b * a;}
Poly integral(Poly const & p);
Poly derivative(Poly const & p);
Poly divide_out_root(Poly const & p, double x);
Poly compose(Poly const & a, Poly const & b);
Poly divide(Poly const &a, Poly const &b, Poly &r);
Poly gcd(Poly const &a, Poly const &b, const double tol=1e-10);
/*** solve(Poly p)
* find all p.degree() roots of p.
* This function can take a long time with suitably crafted polynomials, but in practice it should be fast. Should we provide special forms for degree() <= 4?
*/
std::vector<std::complex<double> > solve(const Poly & p);
#ifdef HAVE_GSL
/*** solve_reals(Poly p)
* find all real solutions to Poly p.
* currently we just use solve and pick out the suitably real looking values, there may be a better algorithm.
*/
std::vector<double> solve_reals(const Poly & p);
#endif
double polish_root(Poly const & p, double guess, double tol);
/** @brief Analytically solve quadratic equation.
* The equation is given in the standard form: ax^2 + bx + c = 0.
* Only real roots are returned. */
std::vector<Coord> solve_quadratic(Coord a, Coord b, Coord c);
/** @brief Analytically solve cubic equation.
* The equation is given in the standard form: ax^3 + bx^2 + cx + d = 0.
* Only real roots are returned. */
std::vector<Coord> solve_cubic(Coord a, Coord b, Coord c, Coord d);
/** @brief Analytically solve quartic equation.
* The equation is given in the standard form: ax^4 + bx^3 + cx^2 + dx + e = 0.
* Only real roots are returned. */
std::vector<Coord> solve_quartic(Coord a, Coord b, Coord c, Coord d, Coord e);
inline std::ostream &operator<< (std::ostream &out_file, const Poly &in_poly) {
if(in_poly.size() == 0)
out_file << "0";
else {
for(int i = (int)in_poly.size()-1; i >= 0; --i) {
if(i == 1) {
out_file << "" << in_poly[i] << "*x";
out_file << " + ";
} else if(i) {
out_file << "" << in_poly[i] << "*x^" << i;
out_file << " + ";
} else
out_file << in_poly[i];
}
}
return out_file;
}
} // namespace Geom
#endif //LIB2GEOM_SEEN_POLY_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|