1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
/** @file
* @brief Polynomial in symmetric power basis (S-basis)
*//*
* Authors:
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* Michael Sloan <mgsloan@gmail.com>
*
* Copyright (C) 2006-2007 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_SBASIS_H
#define LIB2GEOM_SEEN_SBASIS_H
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>
#include <2geom/linear.h>
#include <2geom/interval.h>
#include <2geom/utils.h>
#include <2geom/exception.h>
//#define USE_SBASISN 1
#if defined(USE_SBASIS_OF)
#include "sbasis-of.h"
#elif defined(USE_SBASISN)
#include "sbasisN.h"
namespace Geom{
/*** An empty SBasis is identically 0. */
class SBasis : public SBasisN<1>;
};
#else
namespace Geom {
/**
* @brief Polynomial in symmetric power basis
* @ingroup Fragments
*/
class SBasis {
std::vector<Linear> d;
void push_back(Linear const&l) { d.push_back(l); }
public:
// As part of our migration away from SBasis isa vector we provide this minimal set of vector interface methods.
size_t size() const {return d.size();}
typedef std::vector<Linear>::iterator iterator;
typedef std::vector<Linear>::const_iterator const_iterator;
Linear operator[](unsigned i) const {
return d[i];
}
Linear& operator[](unsigned i) { return d.at(i); }
const_iterator begin() const { return d.begin();}
const_iterator end() const { return d.end();}
iterator begin() { return d.begin();}
iterator end() { return d.end();}
bool empty() const { return d.size() == 1 && d[0][0] == 0 && d[0][1] == 0; }
Linear &back() {return d.back();}
Linear const &back() const {return d.back();}
void pop_back() {
if (d.size() > 1) {
d.pop_back();
} else {
d[0][0] = 0;
d[0][1] = 0;
}
}
void resize(unsigned n) { d.resize(std::max<unsigned>(n, 1));}
void resize(unsigned n, Linear const& l) { d.resize(std::max<unsigned>(n, 1), l);}
void reserve(unsigned n) { d.reserve(n);}
void clear() {
d.resize(1);
d[0][0] = 0;
d[0][1] = 0;
}
void insert(iterator before, const_iterator src_begin, const_iterator src_end) { d.insert(before, src_begin, src_end);}
Linear& at(unsigned i) { return d.at(i);}
//void insert(Linear* before, int& n, Linear const &l) { d.insert(std::vector<Linear>::iterator(before), n, l);}
bool operator==(SBasis const&B) const { return d == B.d;}
bool operator!=(SBasis const&B) const { return d != B.d;}
SBasis()
: d(1, Linear(0, 0))
{}
explicit SBasis(double a)
: d(1, Linear(a, a))
{}
explicit SBasis(double a, double b)
: d(1, Linear(a, b))
{}
SBasis(SBasis const &a)
: d(a.d)
{}
SBasis(std::vector<Linear> ls)
: d(std::move(ls))
{}
SBasis(Linear const &bo)
: d(1, bo)
{}
SBasis(Linear* bo)
: d(1, bo ? *bo : Linear(0, 0))
{}
explicit SBasis(size_t n, Linear const&l) : d(n, l) {}
SBasis(Coord c0, Coord c1, Coord c2, Coord c3)
: d(2)
{
d[0][0] = c0;
d[1][0] = c1;
d[1][1] = c2;
d[0][1] = c3;
}
SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5)
: d(3)
{
d[0][0] = c0;
d[1][0] = c1;
d[2][0] = c2;
d[2][1] = c3;
d[1][1] = c4;
d[0][1] = c5;
}
SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5,
Coord c6, Coord c7)
: d(4)
{
d[0][0] = c0;
d[1][0] = c1;
d[2][0] = c2;
d[3][0] = c3;
d[3][1] = c4;
d[2][1] = c5;
d[1][1] = c6;
d[0][1] = c7;
}
SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5,
Coord c6, Coord c7, Coord c8, Coord c9)
: d(5)
{
d[0][0] = c0;
d[1][0] = c1;
d[2][0] = c2;
d[3][0] = c3;
d[4][0] = c4;
d[4][1] = c5;
d[3][1] = c6;
d[2][1] = c7;
d[1][1] = c8;
d[0][1] = c9;
}
// construct from a sequence of coefficients
template <typename Iter>
SBasis(Iter first, Iter last) {
assert(std::distance(first, last) % 2 == 0);
assert(std::distance(first, last) >= 2);
for (; first != last; ++first) {
--last;
push_back(Linear(*first, *last));
}
}
//IMPL: FragmentConcept
typedef double output_type;
inline bool isZero(double eps=EPSILON) const {
assert(size() > 0);
for(unsigned i = 0; i < size(); i++) {
if(!(*this)[i].isZero(eps)) return false;
}
return true;
}
inline bool isConstant(double eps=EPSILON) const {
assert(size() > 0);
if(!(*this)[0].isConstant(eps)) return false;
for (unsigned i = 1; i < size(); i++) {
if(!(*this)[i].isZero(eps)) return false;
}
return true;
}
bool isFinite() const;
inline Coord at0() const { return (*this)[0][0]; }
inline Coord &at0() { return (*this)[0][0]; }
inline Coord at1() const { return (*this)[0][1]; }
inline Coord &at1() { return (*this)[0][1]; }
int degreesOfFreedom() const { return size()*2;}
double valueAt(double t) const {
assert(size() > 0);
double s = t*(1-t);
double p0 = 0, p1 = 0;
for(unsigned k = size(); k > 0; k--) {
const Linear &lin = (*this)[k-1];
p0 = p0*s + lin[0];
p1 = p1*s + lin[1];
}
return (1-t)*p0 + t*p1;
}
//double valueAndDerivative(double t, double &der) const {
//}
double operator()(double t) const {
return valueAt(t);
}
std::vector<double> valueAndDerivatives(double t, unsigned n) const;
SBasis toSBasis() const { return SBasis(*this); }
double tailError(unsigned tail) const;
// compute f(g)
SBasis operator()(SBasis const & g) const;
//MUTATOR PRISON
//remove extra zeros
void normalize() {
while(size() > 1 && back().isZero(0))
pop_back();
}
void truncate(unsigned k) { if(k < size()) resize(std::max<size_t>(k, 1)); }
private:
void derive(); // in place version
};
//TODO: figure out how to stick this in linear, while not adding an sbasis dep
inline SBasis Linear::toSBasis() const { return SBasis(*this); }
//implemented in sbasis-roots.cpp
OptInterval bounds_exact(SBasis const &a);
OptInterval bounds_fast(SBasis const &a, int order = 0);
OptInterval bounds_local(SBasis const &a, const OptInterval &t, int order = 0);
/** Returns a function which reverses the domain of a.
\param a sbasis function
\relates SBasis
useful for reversing a parameteric curve.
*/
inline SBasis reverse(SBasis const &a) {
SBasis result(a.size(), Linear());
for(unsigned k = 0; k < a.size(); k++)
result[k] = reverse(a[k]);
return result;
}
//IMPL: ScalableConcept
inline SBasis operator-(const SBasis& p) {
if(p.isZero()) return SBasis();
SBasis result(p.size(), Linear());
for(unsigned i = 0; i < p.size(); i++) {
result[i] = -p[i];
}
return result;
}
SBasis operator*(SBasis const &a, double k);
inline SBasis operator*(double k, SBasis const &a) { return a*k; }
inline SBasis operator/(SBasis const &a, double k) { return a*(1./k); }
SBasis& operator*=(SBasis& a, double b);
inline SBasis& operator/=(SBasis& a, double b) { return (a*=(1./b)); }
//IMPL: AddableConcept
SBasis operator+(const SBasis& a, const SBasis& b);
SBasis operator-(const SBasis& a, const SBasis& b);
SBasis& operator+=(SBasis& a, const SBasis& b);
SBasis& operator-=(SBasis& a, const SBasis& b);
//TODO: remove?
/*inline SBasis operator+(const SBasis & a, Linear const & b) {
if(b.isZero()) return a;
if(a.isZero()) return b;
SBasis result(a);
result[0] += b;
return result;
}
inline SBasis operator-(const SBasis & a, Linear const & b) {
if(b.isZero()) return a;
SBasis result(a);
result[0] -= b;
return result;
}
inline SBasis& operator+=(SBasis& a, const Linear& b) {
if(a.isZero())
a.push_back(b);
else
a[0] += b;
return a;
}
inline SBasis& operator-=(SBasis& a, const Linear& b) {
if(a.isZero())
a.push_back(-b);
else
a[0] -= b;
return a;
}*/
//IMPL: OffsetableConcept
inline SBasis operator+(const SBasis & a, double b) {
if(a.isZero()) return Linear(b, b);
SBasis result(a);
result[0] += b;
return result;
}
inline SBasis operator-(const SBasis & a, double b) {
if(a.isZero()) return Linear(-b, -b);
SBasis result(a);
result[0] -= b;
return result;
}
inline SBasis& operator+=(SBasis& a, double b) {
if(a.isZero())
a = SBasis(Linear(b,b));
else
a[0] += b;
return a;
}
inline SBasis& operator-=(SBasis& a, double b) {
if(a.isZero())
a = SBasis(Linear(-b,-b));
else
a[0] -= b;
return a;
}
SBasis shift(SBasis const &a, int sh);
SBasis shift(Linear const &a, int sh);
inline SBasis truncate(SBasis const &a, unsigned terms) {
SBasis c;
c.insert(c.begin(), a.begin(), a.begin() + std::min(terms, (unsigned)a.size()));
return c;
}
SBasis multiply(SBasis const &a, SBasis const &b);
// This performs a multiply and accumulate operation in about the same time as multiply. return a*b + c
SBasis multiply_add(SBasis const &a, SBasis const &b, SBasis c);
SBasis integral(SBasis const &c);
SBasis derivative(SBasis const &a);
SBasis sqrt(SBasis const &a, int k);
// return a kth order approx to 1/a)
SBasis reciprocal(Linear const &a, int k);
SBasis divide(SBasis const &a, SBasis const &b, int k);
inline SBasis operator*(SBasis const & a, SBasis const & b) {
return multiply(a, b);
}
inline SBasis& operator*=(SBasis& a, SBasis const & b) {
a = multiply(a, b);
return a;
}
/** Returns the degree of the first non zero coefficient.
\param a sbasis function
\param tol largest abs val considered 0
\return first non zero coefficient
\relates SBasis
*/
inline unsigned
valuation(SBasis const &a, double tol=0){
unsigned val=0;
while( val<a.size() &&
fabs(a[val][0])<tol &&
fabs(a[val][1])<tol )
val++;
return val;
}
// a(b(t))
SBasis compose(SBasis const &a, SBasis const &b);
SBasis compose(SBasis const &a, SBasis const &b, unsigned k);
SBasis inverse(SBasis a, int k);
//compose_inverse(f,g)=compose(f,inverse(g)), but is numerically more stable in some good cases...
//TODO: requires g(0)=0 & g(1)=1 atm. generalization should be obvious.
SBasis compose_inverse(SBasis const &f, SBasis const &g, unsigned order=2, double tol=1e-3);
/** Returns the sbasis on domain [0,1] that was t on [from, to]
\param t sbasis function
\param from,to interval
\return sbasis
\relates SBasis
*/
SBasis portion(const SBasis &t, double from, double to);
inline SBasis portion(const SBasis &t, Interval const &ivl) { return portion(t, ivl.min(), ivl.max()); }
// compute f(g)
inline SBasis
SBasis::operator()(SBasis const & g) const {
return compose(*this, g);
}
inline std::ostream &operator<< (std::ostream &out_file, const Linear &bo) {
out_file << "{" << bo[0] << ", " << bo[1] << "}";
return out_file;
}
inline std::ostream &operator<< (std::ostream &out_file, const SBasis & p) {
for(unsigned i = 0; i < p.size(); i++) {
if (i != 0) {
out_file << " + ";
}
out_file << p[i] << "s^" << i;
}
return out_file;
}
// These are deprecated, use sbasis-math.h versions if possible
SBasis sin(Linear bo, int k);
SBasis cos(Linear bo, int k);
std::vector<double> roots(SBasis const & s);
std::vector<double> roots(SBasis const & s, Interval const inside);
std::vector<std::vector<double> > multi_roots(SBasis const &f,
std::vector<double> const &levels,
double htol=1e-7,
double vtol=1e-7,
double a=0,
double b=1);
//--------- Levelset like functions -----------------------------------------------------
/** Solve f(t) = v +/- tolerance. The collection of intervals where
* v - vtol <= f(t) <= v+vtol
* is returned (with a precision tol on the boundaries).
\param f sbasis function
\param level the value of v.
\param vtol: error tolerance on v.
\param a, b limit search on domain [a,b]
\param tol: tolerance on the result bounds.
\returns a vector of intervals.
*/
std::vector<Interval> level_set (SBasis const &f,
double level,
double vtol = 1e-5,
double a=0.,
double b=1.,
double tol = 1e-5);
/** Solve f(t)\in I=[u,v], which defines a collection of intervals (J_k). More precisely,
* a collection (J'_k) is returned with J'_k = J_k up to a given tolerance.
\param f sbasis function
\param level: the given interval of deisred values for f.
\param a, b limit search on domain [a,b]
\param tol: tolerance on the bounds of the result.
\returns a vector of intervals.
*/
std::vector<Interval> level_set (SBasis const &f,
Interval const &level,
double a=0.,
double b=1.,
double tol = 1e-5);
/** 'Solve' f(t) = v +/- tolerance for several values of v at once.
\param f sbasis function
\param levels vector of values, that should be sorted.
\param vtol: error tolerance on v.
\param a, b limit search on domain [a,b]
\param tol: the bounds of the returned intervals are exact up to that tolerance.
\returns a vector of vectors of intervals.
*/
std::vector<std::vector<Interval> > level_sets (SBasis const &f,
std::vector<double> const &levels,
double a=0.,
double b=1.,
double vtol = 1e-5,
double tol = 1e-5);
/** 'Solve' f(t)\in I=[u,v] for several intervals I at once.
\param f sbasis function
\param levels vector of 'y' intervals, that should be disjoints and sorted.
\param a, b limit search on domain [a,b]
\param tol: the bounds of the returned intervals are exact up to that tolerance.
\returns a vector of vectors of intervals.
*/
std::vector<std::vector<Interval> > level_sets (SBasis const &f,
std::vector<Interval> const &levels,
double a=0.,
double b=1.,
double tol = 1e-5);
}
#endif
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
#endif
|