1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
/** @file
* @brief Conic Section
*//*
* Authors:
* Nathan Hurst <njh@njhurst.com>
*
* Copyright 2009 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_CONICSEC_H
#define LIB2GEOM_SEEN_CONICSEC_H
#include <2geom/exception.h>
#include <2geom/angle.h>
#include <2geom/rect.h>
#include <2geom/affine.h>
#include <2geom/point.h>
#include <2geom/line.h>
#include <2geom/bezier-curve.h>
#include <2geom/numeric/linear_system.h>
#include <2geom/numeric/symmetric-matrix-fs.h>
#include <2geom/numeric/symmetric-matrix-fs-operation.h>
#include <optional>
#include <string>
#include <vector>
#include <ostream>
namespace Geom
{
class RatQuad{
/**
* A curve of the form B02*A + B12*B*w + B22*C/(B02 + B12*w + B22)
* These curves can exactly represent a piece conic section less than a certain angle (find out)
*
**/
public:
Point P[3];
double w;
RatQuad() {}
RatQuad(Point a, Point b, Point c, double w) : w(w) {
P[0] = a;
P[1] = b;
P[2] = c;
}
double lambda() const;
static RatQuad fromPointsTangents(Point P0, Point dP0,
Point P,
Point P2, Point dP2);
static RatQuad circularArc(Point P0, Point P1, Point P2);
CubicBezier toCubic() const;
CubicBezier toCubic(double lam) const;
Point pointAt(double t) const;
Point at0() const {return P[0];}
Point at1() const {return P[2];}
void split(RatQuad &a, RatQuad &b) const;
D2<SBasis> hermite() const;
std::vector<SBasis> homogeneous() const;
};
class xAx{
public:
double c[6];
enum kind_t
{
PARABOLA,
CIRCLE,
REAL_ELLIPSE,
IMAGINARY_ELLIPSE,
RECTANGULAR_HYPERBOLA,
HYPERBOLA,
DOUBLE_LINE,
TWO_REAL_PARALLEL_LINES,
TWO_IMAGINARY_PARALLEL_LINES,
TWO_REAL_CROSSING_LINES,
TWO_IMAGINARY_CROSSING_LINES, // crossing at a real point
SINGLE_POINT = TWO_IMAGINARY_CROSSING_LINES,
UNKNOWN
};
xAx() {}
/*
* Define the conic section by its algebraic equation coefficients
*
* c0, .., c5: equation coefficients
*/
xAx (double c0, double c1, double c2, double c3, double c4, double c5)
{
set (c0, c1, c2, c3, c4, c5);
}
/*
* Define a conic section by its related symmetric matrix
*/
xAx (const NL::ConstSymmetricMatrixView<3> & C)
{
set(C);
}
/*
* Define a conic section by computing the one that fits better with
* N points.
*
* points: points to fit
*
* precondition: there must be at least 5 non-overlapping points
*/
xAx (std::vector<Point> const& points)
{
set (points);
}
/*
* Define a section conic by providing the coordinates of one of its
* vertex,the major axis inclination angle and the coordinates of its foci
* with respect to the unidimensional system defined by the major axis with
* origin set at the provided vertex.
*
* _vertex : section conic vertex V
* _angle : section conic major axis angle
* _dist1: +/-distance btw V and nearest focus
* _dist2: +/-distance btw V and farest focus
*
* prerequisite: _dist1 <= _dist2
*/
xAx (const Point& _vertex, double _angle, double _dist1, double _dist2)
{
set (_vertex, _angle, _dist1, _dist2);
}
/*
* Define a conic section by providing one of its vertex and its foci.
*
* _vertex: section conic vertex
* _focus1: section conic focus
* _focus2: section conic focus
*/
xAx (const Point& _vertex, const Point& _focus1, const Point& _focus2)
{
set(_vertex, _focus1, _focus2);
}
/*
* Define a conic section by passing a focus, the related directrix,
* and the eccentricity (e)
* (e < 1 -> ellipse; e = 1 -> parabola; e > 1 -> hyperbola)
*
* _focus: a focus of the conic section
* _directrix: the directrix related to the given focus
* _eccentricity: the eccentricity parameter of the conic section
*/
xAx (const Point & _focus, const Line & _directrix, double _eccentricity)
{
set (_focus, _directrix, _eccentricity);
}
/*
* Made up a degenerate conic section as a pair of lines
*
* l1, l2: lines that made up the conic section
*/
xAx (const Line& l1, const Line& l2)
{
set (l1, l2);
}
/*
* Define the conic section by its algebraic equation coefficients
* c0, ..., c5: equation coefficients
*/
void set (double c0, double c1, double c2, double c3, double c4, double c5)
{
c[0] = c0; c[1] = c1; c[2] = c2; // xx, xy, yy
c[3] = c3; c[4] = c4; // x, y
c[5] = c5; // 1
}
/*
* Define a conic section by its related symmetric matrix
*/
void set (const NL::ConstSymmetricMatrixView<3> & C)
{
set(C(0,0), 2*C(1,0), C(1,1), 2*C(2,0), 2*C(2,1), C(2,2));
}
void set (std::vector<Point> const& points);
void set (const Point& _vertex, double _angle, double _dist1, double _dist2);
void set (const Point& _vertex, const Point& _focus1, const Point& _focus2);
void set (const Point & _focus, const Line & _directrix, double _eccentricity);
void set (const Line& l1, const Line& l2);
static xAx fromPoint(Point p);
static xAx fromDistPoint(Point p, double d);
static xAx fromLine(Point n, double d);
static xAx fromLine(Line l);
static xAx fromPoints(std::vector<Point> const &pts);
template<typename T>
T evaluate_at(T x, T y) const {
return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x + c[4]*y + c[5];
}
double valueAt(Point P) const;
std::vector<double> implicit_form_coefficients() const {
return std::vector<double>(c, c+6);
}
template<typename T>
T evaluate_at(T x, T y, T w) const {
return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x*w + c[4]*y*w + c[5]*w*w;
}
xAx scale(double sx, double sy) const;
Point gradient(Point p) const;
xAx operator-(xAx const &b) const;
xAx operator+(xAx const &b) const;
xAx operator+(double const &b) const;
xAx operator*(double const &b) const;
std::vector<Point> crossings(Rect r) const;
std::optional<RatQuad> toCurve(Rect const & bnd) const;
std::vector<double> roots(Point d, Point o) const;
std::vector<double> roots(Line const &l) const;
static Interval quad_ex(double a, double b, double c, Interval ivl);
Geom::Affine hessian() const;
std::optional<Point> bottom() const;
Interval extrema(Rect r) const;
/*
* Return the symmetric matrix related to the conic section.
* Modifying the matrix does not modify the conic section
*/
NL::SymmetricMatrix<3> get_matrix() const
{
NL::SymmetricMatrix<3> C(c);
C(1,0) *= 0.5; C(2,0) *= 0.5; C(2,1) *= 0.5;
return C;
}
/*
* Return the i-th coefficient of the conic section algebraic equation
* Modifying the returned value does not modify the conic section coefficient
*/
double coeff (size_t i) const
{
return c[i];
}
/*
* Return the i-th coefficient of the conic section algebraic equation
* Modifying the returned value modifies the conic section coefficient
*/
double& coeff (size_t i)
{
return c[i];
}
kind_t kind () const;
std::string categorise() const;
/*
* Return true if the equation:
* c0*x^2 + c1*xy + c2*y^2 + c3*x + c4*y +c5 == 0
* really defines a conic, false otherwise
*/
bool is_quadratic() const
{
return (coeff(0) != 0 || coeff(1) != 0 || coeff(2) != 0);
}
/*
* Return true if the conic is degenerate, i.e. if the related matrix
* determinant is null, false otherwise
*/
bool isDegenerate() const
{
return (det_sgn (get_matrix()) == 0);
}
/*
* Compute the centre of symmetry of the conic section when it exists,
* else it return an uninitialized std::optional<Point> instance.
*/
std::optional<Point> centre() const
{
typedef std::optional<Point> opt_point_t;
double d = coeff(1) * coeff(1) - 4 * coeff(0) * coeff(2);
if (are_near (d, 0)) return opt_point_t();
NL::Matrix Q(2, 2);
Q(0,0) = coeff(0);
Q(1,1) = coeff(2);
Q(0,1) = Q(1,0) = coeff(1) * 0.5;
NL::Vector T(2);
T[0] = - coeff(3) * 0.5;
T[1] = - coeff(4) * 0.5;
NL::LinearSystem ls (Q, T);
NL::Vector sol = ls.SV_solve();
Point C;
C[0] = sol[0];
C[1] = sol[1];
return opt_point_t(C);
}
double axis_angle() const;
void roots (std::vector<double>& sol, Coord v, Dim2 d) const;
xAx translate (const Point & _offset) const;
xAx rotate (double angle) const;
/*
* Rotate the conic section by the given angle wrt the provided point.
*
* _rot_centre: the rotation centre
* _angle: the rotation angle
*/
xAx rotate (const Point & _rot_centre, double _angle) const
{
xAx result
= translate (-_rot_centre).rotate (_angle).translate (_rot_centre);
return result;
}
/*
* Compute the tangent line of the conic section at the provided point
*
* _point: the conic section point the tangent line pass through
*/
Line tangent (const Point & _point) const
{
NL::Vector pp(3);
pp[0] = _point[0]; pp[1] = _point[1]; pp[2] = 1;
NL::SymmetricMatrix<3> C = get_matrix();
NL::Vector line = C * pp;
return Line(line[0], line[1], line[2]);
}
/*
* For a non degenerate conic compute the dual conic.
* TODO: investigate degenerate case
*/
xAx dual () const
{
//assert (! isDegenerate());
NL::SymmetricMatrix<3> C = get_matrix();
NL::SymmetricMatrix<3> D = adj(C);
xAx dc(D);
return dc;
}
bool decompose (Line& l1, Line& l2) const;
/**
* @brief Division-free decomposition of a degenerate conic section, without
* degeneration test.
*
* When the conic is degenerate, it consists of 0, 1 or 2 lines in the xy-plane.
* This function returns these lines. But it does not check whether the conic
* is really degenerate, so calling it on a non-degenerate conic produces a
* meaningless result.
*
* If the number of lines is less than two, the trailing lines in the returned
* array will be degenerate. Use Line::isDegenerate() to test for that.
*
* This version of the decomposition is division-free, which improves numerical
* stability compared to decompose().
*
* @param epsilon The numerical threshold for floating point comparison of discriminants.
*/
std::array<Line, 2> decompose_df(Coord epsilon = EPSILON) const;
/*
* Generate a RatQuad object from a conic arc.
*
* p0: the initial point of the arc
* p1: the inner point of the arc
* p2: the final point of the arc
*/
RatQuad toRatQuad (const Point & p0,
const Point & p1,
const Point & p2) const
{
Point dp0 = gradient (p0);
Point dp2 = gradient (p2);
return
RatQuad::fromPointsTangents (p0, rot90 (dp0), p1, p2, rot90 (dp2));
}
/*
* Return the angle related to the normal gradient computed at the passed
* point.
*
* _point: the point at which computes the angle
*
* prerequisite: the passed point must lie on the conic
*/
double angle_at (const Point & _point) const
{
double angle = atan2 (gradient (_point));
if (angle < 0) angle += (2*M_PI);
return angle;
}
/*
* Return true if the given point is contained in the conic arc determined
* by the passed points.
*
* _point: the point to be tested
* _initial: the initial point of the arc
* _inner: an inner point of the arc
* _final: the final point of the arc
*
* prerequisite: the passed points must lie on the conic, the inner point
* has to be strictly contained in the arc, except when the
* initial and final points are equal: in such a case if the
* inner point is also equal to them, then they define an arc
* made up by a single point.
*
*/
bool arc_contains (const Point & _point, const Point & _initial,
const Point & _inner, const Point & _final) const
{
AngleInterval ai(angle_at(_initial), angle_at(_inner), angle_at(_final));
return ai.contains(angle_at(_point));
}
Rect arc_bound (const Point & P1, const Point & Q, const Point & P2) const;
std::vector<Point> allNearestTimes (const Point &P) const;
/*
* Return the point on the conic section nearest to the passed point "P".
*
* P: the point to compute the nearest one
*/
Point nearestTime (const Point &P) const
{
std::vector<Point> points = allNearestTimes (P);
if ( !points.empty() )
{
return points.front();
}
// else
THROW_LOGICALERROR ("nearestTime: no nearest point found");
return Point();
}
};
std::vector<Point> intersect(const xAx & C1, const xAx & C2);
bool clip (std::vector<RatQuad> & rq, const xAx & cs, const Rect & R);
inline std::ostream &operator<< (std::ostream &out_file, const xAx &x) {
for(double i : x.c) {
out_file << i << ", ";
}
return out_file;
}
};
#endif // LIB2GEOM_SEEN_CONICSEC_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|