1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
/*
* Fitting Models for Geom Types
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _NL_FITTING_MODEL_H_
#define _NL_FITTING_MODEL_H_
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/bezier.h>
#include <2geom/bezier-curve.h>
#include <2geom/polynomial.h>
#include <2geom/ellipse.h>
#include <2geom/circle.h>
#include <2geom/utils.h>
#include <2geom/conicsec.h>
namespace Geom { namespace NL {
/*
* A model is an abstraction for an expression dependent from a parameter where
* the coefficients of this expression are the unknowns of the fitting problem.
* For a ceratain number of parameter values we know the related values
* the expression evaluates to: from each parameter value we get a row of
* the matrix of the fitting problem, from each expression value we get
* the related constant term.
* Example: given the model a*x^2 + b*x + c = 0; from x = 1 we get
* the equation a + b + c = 0, in this example the constant term is always
* the same for each parameter value.
*
* A model is required to implement 3 methods:
*
* - size : returns the number of unknown coefficients that appear in
* the expression of the fitting problem;
* - feed : its input is a parameter value and the related expression value,
* it generates a matrix row and a new entry of the constant vector
* of the fitting problem;
* - instance : it has an input parameter represented by the raw vector
* solution of the fitting problem and an output parameter
* of type InstanceType that return a specific object that is
* generated using the fitting problem solution, in the example
* above the object could be a Poly type.
*/
/*
* completely unknown models must inherit from this template class;
* example: the model a*x^2 + b*x + c = 0 to be solved wrt a, b, c;
* example: the model A(t) = known_sample_value_at(t) to be solved wrt
* the coefficients of the curve A(t) expressed in S-Basis form;
* parameter type: the type of x and t variable in the examples above;
* value type: the type of the known sample values (in the first example
* is constant )
* instance type: the type of the objects produced by using
* the fitting raw data solution
*/
template< typename ParameterType, typename ValueType, typename InstanceType >
class LinearFittingModel
{
public:
typedef ParameterType parameter_type;
typedef ValueType value_type;
typedef InstanceType instance_type;
static const bool WITH_FIXED_TERMS = false;
/*
* a LinearFittingModel must implement the following methods:
*
* void feed( VectorView & vector,
* parameter_type const& sample_parameter ) const;
*
* size_t size() const;
*
* void instance(instance_type &, raw_type const& raw_data) const;
*
*/
};
/*
* partially known models must inherit from this template class
* example: the model a*x^2 + 2*x + c = 0 to be solved wrt a and c
*/
template< typename ParameterType, typename ValueType, typename InstanceType >
class LinearFittingModelWithFixedTerms
{
public:
typedef ParameterType parameter_type;
typedef ValueType value_type;
typedef InstanceType instance_type;
static const bool WITH_FIXED_TERMS = true;
/*
* a LinearFittingModelWithFixedTerms must implement the following methods:
*
* void feed( VectorView & vector,
* value_type & fixed_term,
* parameter_type const& sample_parameter ) const;
*
* size_t size() const;
*
* void instance(instance_type &, raw_type const& raw_data) const;
*
*/
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of a polynomial
// represented in standard power basis
template< typename InstanceType >
class LFMPowerBasis
: public LinearFittingModel<double, double, InstanceType>
{
public:
LFMPowerBasis(size_t degree)
: m_size(degree + 1)
{
}
void feed( VectorView & coeff, double sample_parameter ) const
{
coeff[0] = 1;
double x_i = 1;
for (size_t i = 1; i < coeff.size(); ++i)
{
x_i *= sample_parameter;
coeff[i] = x_i;
}
}
size_t size() const
{
return m_size;
}
private:
size_t m_size;
};
// this model generates Geom::Poly objects
class LFMPoly
: public LFMPowerBasis<Poly>
{
public:
LFMPoly(size_t degree)
: LFMPowerBasis<Poly>(degree)
{
}
void instance(Poly & poly, ConstVectorView const& raw_data) const
{
poly.clear();
poly.resize(size());
for (size_t i = 0; i < raw_data.size(); ++i)
{
poly[i] = raw_data[i];
}
}
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of a polynomial
// represented in standard power basis with leading term coefficient equal to 1
template< typename InstanceType >
class LFMNormalizedPowerBasis
: public LinearFittingModelWithFixedTerms<double, double, InstanceType>
{
public:
LFMNormalizedPowerBasis(size_t _degree)
: m_model( _degree - 1)
{
assert(_degree > 0);
}
void feed( VectorView & coeff,
double & known_term,
double sample_parameter ) const
{
m_model.feed(coeff, sample_parameter);
known_term = coeff[m_model.size()-1] * sample_parameter;
}
size_t size() const
{
return m_model.size();
}
private:
LFMPowerBasis<InstanceType> m_model;
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of the equation
// of an ellipse curve
//template< typename InstanceType >
//class LFMEllipseEquation
// : public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
//{
// public:
// void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
// {
// coeff[0] = p[X] * p[Y];
// coeff[1] = p[Y] * p[Y];
// coeff[2] = p[X];
// coeff[3] = p[Y];
// coeff[4] = 1;
// fixed_term = p[X] * p[X];
// }
//
// size_t size() const
// {
// return 5;
// }
//};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of the equation
// of a conic section
template< typename InstanceType >
class LFMConicEquation
: public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
{
public:
void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
{
coeff[0] = p[X] * p[Y];
coeff[1] = p[Y] * p[Y];
coeff[2] = p[X];
coeff[3] = p[Y];
coeff[4] = 1;
fixed_term = p[X] * p[X];
}
size_t size() const
{
return 5;
}
};
// this model generates Ellipse curves
class LFMConicSection
: public LFMConicEquation<xAx>
{
public:
void instance(xAx & c, ConstVectorView const& coeff) const
{
c.set(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
}
};
// this model generates Ellipse curves
class LFMEllipse
: public LFMConicEquation<Ellipse>
{
public:
void instance(Ellipse & e, ConstVectorView const& coeff) const
{
e.setCoefficients(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
}
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of the equation
// of a circle curve
template< typename InstanceType >
class LFMCircleEquation
: public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
{
public:
void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
{
coeff[0] = p[X];
coeff[1] = p[Y];
coeff[2] = 1;
fixed_term = p[X] * p[X] + p[Y] * p[Y];
}
size_t size() const
{
return 3;
}
};
// this model generates Ellipse curves
class LFMCircle
: public LFMCircleEquation<Circle>
{
public:
void instance(Circle & c, ConstVectorView const& coeff) const
{
c.setCoefficients(1, coeff[0], coeff[1], coeff[2]);
}
};
// this model generates SBasis objects
class LFMSBasis
: public LinearFittingModel<double, double, SBasis>
{
public:
LFMSBasis( size_t _order )
: m_size( 2*(_order+1) ),
m_order(_order)
{
}
void feed( VectorView & coeff, double t ) const
{
double u0 = 1-t;
double u1 = t;
double s = u0 * u1;
coeff[0] = u0;
coeff[1] = u1;
for (size_t i = 2; i < size(); i+=2)
{
u0 *= s;
u1 *= s;
coeff[i] = u0;
coeff[i+1] = u1;
}
}
size_t size() const
{
return m_size;
}
void instance(SBasis & sb, ConstVectorView const& raw_data) const
{
sb.resize(m_order+1);
for (unsigned int i = 0, k = 0; i < raw_data.size(); i+=2, ++k)
{
sb[k][0] = raw_data[i];
sb[k][1] = raw_data[i+1];
}
}
private:
size_t m_size;
size_t m_order;
};
// this model generates D2<SBasis> objects
class LFMD2SBasis
: public LinearFittingModel< double, Point, D2<SBasis> >
{
public:
LFMD2SBasis( size_t _order )
: mosb(_order)
{
}
void feed( VectorView & coeff, double t ) const
{
mosb.feed(coeff, t);
}
size_t size() const
{
return mosb.size();
}
void instance(D2<SBasis> & d2sb, ConstMatrixView const& raw_data) const
{
mosb.instance(d2sb[X], raw_data.column_const_view(X));
mosb.instance(d2sb[Y], raw_data.column_const_view(Y));
}
private:
LFMSBasis mosb;
};
// this model generates Bezier objects
class LFMBezier
: public LinearFittingModel<double, double, Bezier>
{
public:
LFMBezier( size_t _order )
: m_size(_order + 1),
m_order(_order)
{
binomial_coefficients(m_bc, m_order);
}
void feed( VectorView & coeff, double t ) const
{
double s = 1;
for (size_t i = 0; i < size(); ++i)
{
coeff[i] = s * m_bc[i];
s *= t;
}
double u = 1-t;
s = 1;
for (size_t i = size()-1; i > 0; --i)
{
coeff[i] *= s;
s *= u;
}
coeff[0] *= s;
}
size_t size() const
{
return m_size;
}
void instance(Bezier & b, ConstVectorView const& raw_data) const
{
assert(b.size() == raw_data.size());
for (unsigned int i = 0; i < raw_data.size(); ++i)
{
b[i] = raw_data[i];
}
}
private:
size_t m_size;
size_t m_order;
std::vector<size_t> m_bc;
};
// this model generates Bezier curves
template <unsigned degree>
class LFMBezierCurveN
: public LinearFittingModel< double, Point, BezierCurveN<degree> >
{
public:
LFMBezierCurveN()
: mob(degree+1)
{
}
void feed( VectorView & coeff, double t ) const
{
mob.feed(coeff, t);
}
size_t size() const
{
return mob.size();
}
void instance(BezierCurveN<degree> & bc, ConstMatrixView const& raw_data) const
{
Bezier bx(degree);
Bezier by(degree);
mob.instance(bx, raw_data.column_const_view(X));
mob.instance(by, raw_data.column_const_view(Y));
bc = BezierCurveN<degree>(bx, by);
}
private:
LFMBezier mob;
};
} // end namespace NL
} // end namespace Geom
#endif // _NL_FITTING_MODEL_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|