1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
/*
* Fitting Tools
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _NL_FITTING_TOOL_H_
#define _NL_FITTING_TOOL_H_
#include <2geom/numeric/vector.h>
#include <2geom/numeric/matrix.h>
#include <2geom/point.h>
#include <vector>
/*
* The least_square_fitter class represents a tool for solving a fitting
* problem with respect to a given model that represents an expression
* dependent from a parameter where the coefficients of this expression
* are the unknowns of the fitting problem.
* The minimizing solution is found by computing the pseudo-inverse
* of the problem matrix
*/
namespace Geom { namespace NL {
namespace detail {
template< typename ModelT>
class lsf_base
{
public:
typedef ModelT model_type;
typedef typename model_type::parameter_type parameter_type;
typedef typename model_type::value_type value_type;
lsf_base(model_type const &_model, size_t forecasted_samples)
: m_model(_model)
, m_total_samples(0)
, m_matrix(forecasted_samples, m_model.size())
, m_psdinv_matrix(nullptr)
{}
// compute pseudo inverse
void update()
{
if (total_samples() == 0) return;
if (m_psdinv_matrix != NULL)
{
delete m_psdinv_matrix;
}
MatrixView mv(m_matrix, 0, 0, total_samples(), m_matrix.columns());
m_psdinv_matrix = new Matrix( pseudo_inverse(mv) );
assert(m_psdinv_matrix != NULL);
}
size_t total_samples() const
{
return m_total_samples;
}
bool is_full() const
{
return (total_samples() == m_matrix.rows());
}
void clear()
{
m_total_samples = 0;
}
virtual
~lsf_base()
{
if (m_psdinv_matrix != NULL)
{
delete m_psdinv_matrix;
}
}
protected:
const model_type & m_model;
size_t m_total_samples;
Matrix m_matrix;
Matrix* m_psdinv_matrix;
}; // end class lsf_base
template< typename ModelT, typename ValueType = typename ModelT::value_type>
class lsf_solution
{
};
// a fitting process on samples with value of type double
// produces a solution of type Vector
template< typename ModelT>
class lsf_solution<ModelT, double>
: public lsf_base<ModelT>
{
public:
typedef ModelT model_type;
typedef typename model_type::parameter_type parameter_type;
typedef typename model_type::value_type value_type;
typedef Vector solution_type;
typedef lsf_base<model_type> base_type;
using base_type::m_model;
using base_type::m_psdinv_matrix;
using base_type::total_samples;
public:
lsf_solution(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
, m_solution(_model.size())
{}
template< typename VectorT >
solution_type& result(VectorT const& sample_values)
{
assert(sample_values.size() == total_samples());
ConstVectorView sv(sample_values);
m_solution = (*m_psdinv_matrix) * sv;
return m_solution;
}
// a comparison between old sample values and the new ones is performed
// in order to minimize computation
// prerequisite:
// old_sample_values.size() == new_sample_values.size()
// no update() call can be performed between two result invocations
template< typename VectorT >
solution_type& result( VectorT const& old_sample_values,
VectorT const& new_sample_values )
{
assert(old_sample_values.size() == total_samples());
assert(new_sample_values.size() == total_samples());
Vector diff(total_samples());
for (size_t i = 0; i < diff.size(); ++i)
{
diff[i] = new_sample_values[i] - old_sample_values[i];
}
Vector column(m_model.size());
Vector delta(m_model.size(), 0.0);
for (size_t i = 0; i < diff.size(); ++i)
{
if (diff[i] != 0)
{
column = m_psdinv_matrix->column_view(i);
column.scale(diff[i]);
delta += column;
}
}
m_solution += delta;
return m_solution;
}
solution_type& result()
{
return m_solution;
}
private:
solution_type m_solution;
}; // end class lsf_solution<ModelT, double>
// a fitting process on samples with value of type Point
// produces a solution of type Matrix (with 2 columns)
template< typename ModelT>
class lsf_solution<ModelT, Point>
: public lsf_base<ModelT>
{
public:
typedef ModelT model_type;
typedef typename model_type::parameter_type parameter_type;
typedef typename model_type::value_type value_type;
typedef Matrix solution_type;
typedef lsf_base<model_type> base_type;
using base_type::m_model;
using base_type::m_psdinv_matrix;
using base_type::total_samples;
public:
lsf_solution(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
, m_solution(_model.size(), 2)
{}
solution_type& result(std::vector<Point> const& sample_values)
{
assert(sample_values.size() == total_samples());
Matrix svm(total_samples(), 2);
for (size_t i = 0; i < total_samples(); ++i)
{
svm(i, X) = sample_values[i][X];
svm(i, Y) = sample_values[i][Y];
}
m_solution = (*m_psdinv_matrix) * svm;
return m_solution;
}
// a comparison between old sample values and the new ones is performed
// in order to minimize computation
// prerequisite:
// old_sample_values.size() == new_sample_values.size()
// no update() call can to be performed between two result invocations
solution_type& result( std::vector<Point> const& old_sample_values,
std::vector<Point> const& new_sample_values )
{
assert(old_sample_values.size() == total_samples());
assert(new_sample_values.size() == total_samples());
Matrix diff(total_samples(), 2);
for (size_t i = 0; i < total_samples(); ++i)
{
diff(i, X) = new_sample_values[i][X] - old_sample_values[i][X];
diff(i, Y) = new_sample_values[i][Y] - old_sample_values[i][Y];
}
Vector column(m_model.size());
Matrix delta(m_model.size(), 2, 0.0);
VectorView deltax = delta.column_view(X);
VectorView deltay = delta.column_view(Y);
for (size_t i = 0; i < total_samples(); ++i)
{
if (diff(i, X) != 0)
{
column = m_psdinv_matrix->column_view(i);
column.scale(diff(i, X));
deltax += column;
}
if (diff(i, Y) != 0)
{
column = m_psdinv_matrix->column_view(i);
column.scale(diff(i, Y));
deltay += column;
}
}
m_solution += delta;
return m_solution;
}
solution_type& result()
{
return m_solution;
}
private:
solution_type m_solution;
}; // end class lsf_solution<ModelT, Point>
template< typename ModelT,
bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS >
class lsf_with_fixed_terms
{
};
// fitting tool for completely unknown models
template< typename ModelT>
class lsf_with_fixed_terms<ModelT, false>
: public lsf_solution<ModelT>
{
public:
typedef ModelT model_type;
typedef typename model_type::parameter_type parameter_type;
typedef typename model_type::value_type value_type;
typedef lsf_solution<model_type> base_type;
typedef typename base_type::solution_type solution_type;
using base_type::total_samples;
using base_type::is_full;
using base_type::m_matrix;
using base_type::m_total_samples;
using base_type::m_model;
public:
lsf_with_fixed_terms(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
{}
void append(parameter_type const& sample_parameter)
{
assert(!is_full());
VectorView row = m_matrix.row_view(total_samples());
m_model.feed(row, sample_parameter);
++m_total_samples;
}
void append_copy(size_t sample_index)
{
assert(!is_full());
assert(sample_index < total_samples());
VectorView dest_row = m_matrix.row_view(total_samples());
VectorView source_row = m_matrix.row_view(sample_index);
dest_row = source_row;
++m_total_samples;
}
}; // end class lsf_with_fixed_terms<ModelT, false>
// fitting tool for partially known models
template< typename ModelT>
class lsf_with_fixed_terms<ModelT, true>
: public lsf_solution<ModelT>
{
public:
typedef ModelT model_type;
typedef typename model_type::parameter_type parameter_type;
typedef typename model_type::value_type value_type;
typedef lsf_solution<model_type> base_type;
typedef typename base_type::solution_type solution_type;
using base_type::total_samples;
using base_type::is_full;
using base_type::m_matrix;
using base_type::m_total_samples;
using base_type::m_model;
public:
lsf_with_fixed_terms(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
, m_vector(forecasted_samples)
, m_vector_view(nullptr)
{}
void append(parameter_type const& sample_parameter)
{
assert(!is_full());
VectorView row = m_matrix.row_view(total_samples());
m_model.feed(row, m_vector[total_samples()], sample_parameter);
++m_total_samples;
}
void append_copy(size_t sample_index)
{
assert(!is_full());
assert(sample_index < total_samples());
VectorView dest_row = m_matrix.row_view(total_samples());
VectorView source_row = m_matrix.row_view(sample_index);
dest_row = source_row;
m_vector[total_samples()] = m_vector[sample_index];
++m_total_samples;
}
void update()
{
base_type::update();
if (total_samples() == 0) return;
if (m_vector_view != NULL)
{
delete m_vector_view;
}
m_vector_view = new VectorView(m_vector, base_type::total_samples());
assert(m_vector_view != NULL);
}
~lsf_with_fixed_terms() override
{
if (m_vector_view) {
delete m_vector_view;
}
}
protected:
Vector m_vector;
VectorView* m_vector_view;
};
} // end namespace detail
template< typename ModelT,
typename ValueType = typename ModelT::value_type,
bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS >
class least_squeares_fitter
{
};
template< typename ModelT, typename ValueType >
class least_squeares_fitter<ModelT, ValueType, false>
: public detail::lsf_with_fixed_terms<ModelT>
{
public:
typedef ModelT model_type;
typedef detail::lsf_with_fixed_terms<model_type> base_type;
typedef typename base_type::parameter_type parameter_type;
typedef typename base_type::value_type value_type;
typedef typename base_type::solution_type solution_type;
public:
least_squeares_fitter(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
{}
};
template< typename ModelT>
class least_squeares_fitter<ModelT, double, true>
: public detail::lsf_with_fixed_terms<ModelT>
{
public:
typedef ModelT model_type;
typedef detail::lsf_with_fixed_terms<model_type> base_type;
typedef typename base_type::parameter_type parameter_type;
typedef typename base_type::value_type value_type;
typedef typename base_type::solution_type solution_type;
using base_type::m_vector_view;
//using base_type::result; // VSC legacy support
solution_type& result( std::vector<Point> const& old_sample_values,
std::vector<Point> const& new_sample_values )
{
return base_type::result(old_sample_values, new_sample_values);
}
solution_type& result()
{
return base_type::result();
}
public:
least_squeares_fitter(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
{}
template< typename VectorT >
solution_type& result(VectorT const& sample_values)
{
assert(sample_values.size() == m_vector_view->size());
Vector sv(sample_values.size());
for (size_t i = 0; i < sv.size(); ++i)
sv[i] = sample_values[i] - (*m_vector_view)[i];
return base_type::result(sv);
}
}; // end class least_squeares_fitter<ModelT, double, true>
template< typename ModelT>
class least_squeares_fitter<ModelT, Point, true>
: public detail::lsf_with_fixed_terms<ModelT>
{
public:
typedef ModelT model_type;
typedef detail::lsf_with_fixed_terms<model_type> base_type;
typedef typename base_type::parameter_type parameter_type;
typedef typename base_type::value_type value_type;
typedef typename base_type::solution_type solution_type;
using base_type::m_vector_view;
//using base_type::result; // VCS legacy support
solution_type& result( std::vector<Point> const& old_sample_values,
std::vector<Point> const& new_sample_values )
{
return base_type::result(old_sample_values, new_sample_values);
}
solution_type& result()
{
return base_type::result();
}
public:
least_squeares_fitter(model_type const &_model,
size_t forecasted_samples)
: base_type(_model, forecasted_samples)
{}
solution_type& result(std::vector<Point> const& sample_values)
{
assert(sample_values.size() == m_vector_view->size());
NL::Matrix sv(sample_values.size(), 2);
for (size_t i = 0; i < sample_values.size(); ++i)
{
sv(i, X) = sample_values[i][X] - (*m_vector_view)[i];
sv(i, Y) = sample_values[i][Y] - (*m_vector_view)[i];
}
return base_type::result(sv);
}
}; // end class least_squeares_fitter<ModelT, Point, true>
} // end namespace NL
} // end namespace Geom
#endif // _NL_FITTING_TOOL_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|