1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/*
* Routines to compute the implicit equation of a parametric polynomial curve
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _GEOM_SL_IMPLICIT_H_
#define _GEOM_SL_IMPLICIT_H_
#include <2geom/symbolic/multipoly.h>
#include <2geom/symbolic/matrix.h>
#include <2geom/exception.h>
#include <array>
namespace Geom { namespace SL {
typedef MultiPoly<1, double> MVPoly1;
typedef MultiPoly<2, double> MVPoly2;
typedef MultiPoly<3, double> MVPoly3;
typedef std::array<MVPoly1, 3> poly_vector_type;
typedef std::array<poly_vector_type, 2> basis_type;
typedef std::array<double, 3> coeff_vector_type;
namespace detail {
/*
* transform a univariate polynomial f(t) in a 3-variate polynomial
* p(t, x, y) = f(t) * x^i * y^j
*/
inline
void poly1_to_poly3(MVPoly3 & p3, MVPoly1 const& p1, size_t i, size_t j)
{
multi_index_type I = make_multi_index(0, i, j);
for (; I[0] < p1.get_poly().size(); ++I[0])
{
p3.coefficient(I, p1[I[0]]);
}
}
/*
* evaluates the degree of a poly_vector_type, such a degree is defined as:
* deg({p[0](t), p[1](t), p[2](t)}) := {max(deg(p[i](t)), i = 0, 1, 2), k}
* here k is the index where the max is achieved,
* if deg(p[i](t)) == deg(p[j](t)) and i < j then k = i
*/
inline
std::pair<size_t, size_t> deg(poly_vector_type const& p)
{
std::pair<size_t, size_t> d;
d.first = p[0].get_poly().real_degree();
d.second = 0;
size_t k = p[1].get_poly().real_degree();
if (d.first < k)
{
d.first = k;
d.second = 1;
}
k = p[2].get_poly().real_degree();
if (d.first < k)
{
d.first = k;
d.second = 2;
}
return d;
}
} // end namespace detail
/*
* A polynomial parametrization could be seen as 1-variety V in R^3,
* intersection of two surfaces x = f(t), y = g(t), this variety V has
* attached an ideal I in the ring of polynomials in t, x, y with coefficients
* on reals; a basis of generators for I is given by p(t, x, y) = x - f(t),
* q(t, x, y) = y - g(t); such a basis has the nice property that could be
* written as a couple of vectors of dim 3 with entries in R[t]; the original
* polinomials p and q can be obtained by doing a dot product between each
* vector and the vector {x, y, 1}
* As reference you can read the text book:
* Ideals, Varieties and Algorithms by Cox, Little, O'Shea
*/
inline
void make_initial_basis(basis_type& b, MVPoly1 const& p, MVPoly1 const& q)
{
// first basis vector
b[0][0] = 1;
b[0][1] = 0;
b[0][2] = -p;
// second basis vector
b[1][0] = 0;
b[1][1] = 1;
b[1][2] = -q;
}
/*
* Starting from the initial basis for the ideal I is possible to make up
* a new basis, still showing off the nice property that each generator is
* a moving line that is a linear combination of x, y, 1 where the coefficients
* are polynomials in R[t], and moreover each generator is of minimal degree.
* Can be proved that given a polynomial parametrization f(t), g(t)
* we are able to make up a "micro" basis of generators p(t, x, y), q(t, x, y)
* for the ideal I such that the deg(p, t) = m <= n/2 and deg(q, t) = n - m,
* where n = max(deg(f(t)), deg(g(t))); this let us halve the order of
* the Bezout matrix.
* Reference:
* Zheng, Sederberg - A Direct Approach to Computing the micro-basis
* of a Planar Rational Curves
* Deng, Chen, Shen - Computing micro-Basis of Rational Curves and Surfaces
* Using Polynomial Matrix Factorization
*/
inline
void microbasis(basis_type& b, MVPoly1 const& p, MVPoly1 const& q)
{
typedef std::pair<size_t, size_t> degree_pair_t;
size_t n = std::max(p.get_poly().real_degree(), q.get_poly().real_degree());
make_initial_basis(b, p, q);
degree_pair_t n0 = detail::deg(b[0]);
degree_pair_t n1 = detail::deg(b[1]);
size_t d;
double r0, r1;
//size_t iter = 0;
while ((n0.first + n1.first) > n)// && iter < 30)
{
// ++iter;
// std::cout << "iter = " << iter << std::endl;
// for (size_t i= 0; i < 2; ++i)
// for (size_t j= 0; j < 3; ++j)
// std::cout << b[i][j] << std::endl;
// std::cout << n0.first << ", " << n0.second << std::endl;
// std::cout << n1.first << ", " << n1.second << std::endl;
// std::cout << "-----" << std::endl;
// if (n0.first < n1.first)
// {
// d = n1.first - n0.first;
// r = b[1][n1.second][n1.first] / b[0][n1.second][n0.first];
// for (size_t i = 0; i < b[0].size(); ++i)
// b[1][i] -= ((r * b[0][i]).get_poly() << d);
// b[1][n1.second][n1.first] = 0;
// n1 = detail::deg(b[1]);
// }
// else
// {
// d = n0.first - n1.first;
// r = b[0][n0.second][n0.first] / b[1][n0.second][n1.first];
// for (size_t i = 0; i < b[0].size(); ++i)
// b[0][i] -= ((r * b[1][i]).get_poly() << d);
// b[0][n0.second][n0.first] = 0;
// n0 = detail::deg(b[0]);
// }
// this version shouldn't suffer of ill-conditioning due to
// cancellation issue
if (n0.first < n1.first)
{
d = n1.first - n0.first;
r0 = b[0][n1.second][n0.first];
r1 = b[1][n1.second][n1.first];
for (size_t i = 0; i < b[0].size(); ++i)
{
b[1][i] *= r0;
b[1][i] -= ((r1 * b[0][i]).get_poly() << d);
// without the following division the modulus grows
// beyond the limit of the double type
b[1][i] /= r0;
}
n1 = detail::deg(b[1]);
}
else
{
d = n0.first - n1.first;
r0 = b[0][n1.second][n0.first];
r1 = b[1][n1.second][n1.first];
for (size_t i = 0; i < b[0].size(); ++i)
{
b[0][i] *= r1;
b[0][i] -= ((r0 * b[1][i]).get_poly() << d);
b[0][i] /= r1;
}
n0 = detail::deg(b[0]);
}
}
}
/*
* computes the dot product:
* p(t, x, y) = {p0(t), p1(t), p2(t)} . {x, y, 1}
*/
inline
void basis_to_poly(MVPoly3 & p0, poly_vector_type const& v)
{
MVPoly3 p1, p2;
detail::poly1_to_poly3(p0, v[0], 1,0);
detail::poly1_to_poly3(p1, v[1], 0,1);
detail::poly1_to_poly3(p2, v[2], 0,0);
p0 += p1;
p0 += p2;
}
/*
* Make up a Bezout matrix with two basis genarators as input.
*
* A Bezout matrix is the matrix related to the symmetric bilinear form
* (f,g) -> B[f,g] where B[f,g](s,t) = (f(t)*g(s) - f(s)*g(t))/(s-t)
* where f, g are polynomials, this function is called a bezoutian.
* Given a basis of generators {p(t, x, y), q(t, x, y)} for the ideal I
* related to our parametrization x = f(t), y = g(t), we are able to prove
* that the implicit equation of such polynomial parametrization can be
* evaluated computing the determinant of the Bezout matrix made up using
* the polinomial p and q as univariate polynomials in t with coefficients
* in R[x,y], so the resulting Bezout matrix will be a matrix with bivariate
* polynomials as entries. A Bezout matrix is always symmetric.
* Reference:
* Sederberg, Zheng - Algebraic Methods for Computer Aided Geometric Design
*/
Matrix<MVPoly2>
make_bezout_matrix (MVPoly3 const& p, MVPoly3 const& q)
{
size_t pdeg = p.get_poly().real_degree();
size_t qdeg = q.get_poly().real_degree();
size_t n = std::max(pdeg, qdeg);
Matrix<MVPoly2> BM(n, n);
//std::cerr << "rows, columns " << BM.rows() << " , " << BM.columns() << std::endl;
for (size_t i = n; i >= 1; --i)
{
for (size_t j = n; j >= i; --j)
{
size_t m = std::min(i, n + 1 - j);
//std::cerr << "m = " << m << std::endl;
for (size_t k = 1; k <= m; ++k)
{
//BM(i-1,j-1) += (p[j-1+k] * q[i-k] - p[i-k] * q[j-1+k]);
BM(n-i,n-j) += (p.coefficient(j-1+k) * q.coefficient(i-k)
- p.coefficient(i-k) * q.coefficient(j-1+k));
}
}
}
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < i; ++j)
BM(j,i) = BM(i,j);
}
return BM;
}
/*
* Make a matrix that represents a main minor (i.e. with the diagonal
* on the diagonal of the matrix to which it owns) of the Bezout matrix
* with order n-1 where n is the order of the Bezout matrix.
* The minor is obtained by removing the "h"-th row and the "h"-th column,
* and as the Bezout matrix is symmetric.
*/
Matrix<MVPoly2>
make_bezout_main_minor (MVPoly3 const& p, MVPoly3 const& q, size_t h)
{
size_t pdeg = p.get_poly().real_degree();
size_t qdeg = q.get_poly().real_degree();
size_t n = std::max(pdeg, qdeg);
Matrix<MVPoly2> BM(n-1, n-1);
size_t u = 0, v;
for (size_t i = 1; i <= n; ++i)
{
v = 0;
if (i == h)
{
u = 1;
continue;
}
for (size_t j = 1; j <= i; ++j)
{
if (j == h)
{
v = 1;
continue;
}
size_t m = std::min(i, n + 1 - j);
for (size_t k = 1; k <= m; ++k)
{
//BM(i-u-1,j-v-1) += (p[j-1+k] * q[i-k] - p[i-k] * q[j-1+k]);
BM(i-u-1,j-v-1) += (p.coefficient(j-1+k) * q.coefficient(i-k)
- p.coefficient(i-k) * q.coefficient(j-1+k));
}
}
}
--n;
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < i; ++j)
BM(j,i) = BM(i,j);
}
return BM;
}
} /*end namespace Geom*/ } /*end namespace SL*/
#endif // _GEOM_SL_IMPLICIT_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|