1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/**
* @file
* @brief Affine transformation classes
*//*
* Authors:
* ? <?@?.?>
* Krzysztof KosiĆski <tweenk.pl@gmail.com>
* Johan Engelen
*
* Copyright ?-2012 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_TRANSFORMS_H
#define LIB2GEOM_SEEN_TRANSFORMS_H
#include <cmath>
#include <2geom/forward.h>
#include <2geom/affine.h>
#include <2geom/angle.h>
#include <boost/concept/assert.hpp>
namespace Geom {
/** @brief Type requirements for transforms.
* @ingroup Concepts */
template <typename T>
struct TransformConcept {
T t, t2;
Affine m;
Point p;
bool bool_;
Coord epsilon;
void constraints() {
m = t; //implicit conversion
m *= t;
m = m * t;
m = t * m;
p *= t;
p = p * t;
t *= t;
t = t * t;
t = pow(t, 3);
bool_ = (t == t);
bool_ = (t != t);
t = T::identity();
t = t.inverse();
bool_ = are_near(t, t2);
bool_ = are_near(t, t2, epsilon);
}
};
/** @brief Base template for transforms.
* This class is an implementation detail and should not be used directly. */
template <typename T>
class TransformOperations
: boost::equality_comparable< T
, boost::multipliable< T
> >
{
public:
template <typename T2>
Affine operator*(T2 const &t) const {
Affine ret(*static_cast<T const*>(this)); ret *= t; return ret;
}
};
/** @brief Integer exponentiation for transforms.
* Negative exponents will yield the corresponding power of the inverse. This function
* can also be applied to matrices.
* @param t Affine or transform to exponantiate
* @param n Exponent
* @return \f$A^n\f$ if @a n is positive, \f$(A^{-1})^n\f$ if negative, identity if zero.
* @ingroup Transforms */
template <typename T>
T pow(T const &t, int n) {
BOOST_CONCEPT_ASSERT((TransformConcept<T>));
if (n == 0) return T::identity();
T result(T::identity());
T x(n < 0 ? t.inverse() : t);
if (n < 0) n = -n;
while ( n ) { // binary exponentiation - fast
if ( n & 1 ) { result *= x; --n; }
x *= x; n /= 2;
}
return result;
}
/** @brief Translation by a vector.
* @ingroup Transforms */
class Translate
: public TransformOperations< Translate >
{
Point vec;
public:
/// Create a translation that doesn't do anything.
Translate() = default;
/// Construct a translation from its vector.
explicit Translate(Point const &p) : vec(p) {}
/// Construct a translation from its coordinates.
Translate(Coord x, Coord y) : vec(x, y) {}
operator Affine() const { return Affine(1, 0, 0, 1, vec[X], vec[Y]); }
Coord operator[](Dim2 dim) const { return vec[dim]; }
Coord operator[](unsigned dim) const { return vec[dim]; }
Translate &operator*=(Translate const &o) { vec += o.vec; return *this; }
bool operator==(Translate const &o) const { return vec == o.vec; }
Point vector() const { return vec; }
/// Get the inverse translation.
Translate inverse() const { return Translate(-vec); }
/// Get a translation that doesn't do anything.
static Translate identity() { return {}; }
friend class Point;
};
inline bool are_near(Translate const &a, Translate const &b, Coord eps = EPSILON) {
return are_near(a[X], b[X], eps) && are_near(a[Y], b[Y], eps);
}
/** @brief Scaling from the origin.
* During scaling, the point (0,0) will not move. To obtain a scale with a different
* invariant point, combine with translation to the origin and back.
* @ingroup Transforms */
class Scale
: public TransformOperations< Scale >
{
Point vec = { 1, 1 };
public:
/// Create a scaling that doesn't do anything.
Scale() = default;
/// Create a scaling from two scaling factors given as coordinates of a point.
explicit Scale(Point const &p) : vec(p) {}
/// Create a scaling from two scaling factors.
Scale(Coord x, Coord y) : vec(x, y) {}
/// Create an uniform scaling from a single scaling factor.
explicit Scale(Coord s) : vec(s, s) {}
inline operator Affine() const { return Affine(vec[X], 0, 0, vec[Y], 0, 0); }
Coord operator[](Dim2 d) const { return vec[d]; }
Coord operator[](unsigned d) const { return vec[d]; }
//TODO: should we keep these mutators? add them to the other transforms?
Coord &operator[](Dim2 d) { return vec[d]; }
Coord &operator[](unsigned d) { return vec[d]; }
Scale &operator*=(Scale const &b) { vec[X] *= b[X]; vec[Y] *= b[Y]; return *this; }
bool operator==(Scale const &o) const { return vec == o.vec; }
Point vector() const { return vec; }
Scale inverse() const { return Scale(1./vec[0], 1./vec[1]); }
static Scale identity() { return {}; }
friend class Point;
};
inline bool are_near(Scale const &a, Scale const &b, Coord eps=EPSILON) {
return are_near(a[X], b[X], eps) && are_near(a[Y], b[Y], eps);
}
/** @brief Rotation around the origin.
* Combine with translations to the origin and back to get a rotation around a different point.
* @ingroup Transforms */
class Rotate
: public TransformOperations< Rotate >
{
Point vec = { 1, 0 };
public:
/// Construct a zero-degree rotation.
Rotate() = default;
/** @brief Construct a rotation from its angle in radians.
* Positive arguments correspond to counter-clockwise rotations (if Y grows upwards). */
explicit Rotate(Coord theta) : vec(Point::polar(theta)) {}
/// Construct a rotation from its characteristic vector.
explicit Rotate(Point const &p) : vec(p.normalized()) {}
/// Construct a rotation from the coordinates of its characteristic vector.
explicit Rotate(Coord x, Coord y) : Rotate(Point(x, y)) {}
operator Affine() const { return Affine(vec[X], vec[Y], -vec[Y], vec[X], 0, 0); }
/** @brief Get the characteristic vector of the rotation.
* @return A vector that would be obtained by applying this transform to the X versor. */
Point const &vector() const { return vec; }
Coord angle() const { return atan2(vec); }
Coord operator[](Dim2 dim) const { return vec[dim]; }
Coord operator[](unsigned dim) const { return vec[dim]; }
Rotate &operator*=(Rotate const &o) { vec *= o; return *this; }
bool operator==(Rotate const &o) const { return vec == o.vec; }
Rotate inverse() const {
Rotate r;
r.vec = Point(vec[X], -vec[Y]);
return r;
}
/// @brief Get a zero-degree rotation.
static Rotate identity() { return {}; }
/** @brief Construct a rotation from its angle in degrees.
* Positive arguments correspond to clockwise rotations if Y grows downwards. */
static Rotate from_degrees(Coord deg) { return Rotate(rad_from_deg(deg)); }
static Affine around(Point const &p, Coord angle);
friend class Point;
};
inline bool are_near(Rotate const &a, Rotate const &b, Coord eps = EPSILON) {
return are_near(a[X], b[X], eps) && are_near(a[Y], b[Y], eps);
}
/** @brief Common base for shearing transforms.
* This class is an implementation detail and should not be used directly.
* @ingroup Transforms */
template <typename S>
class ShearBase
: public TransformOperations<S>
{
protected:
Coord f = 0;
ShearBase() = default;
explicit ShearBase(Coord _f) : f(_f) {}
public:
Coord factor() const { return f; }
void setFactor(Coord nf) { f = nf; }
S &operator*=(S const &s) { f += s.f; return static_cast<S &>(*this); }
bool operator==(ShearBase<S> const &s) const { return f == s.f; }
S inverse() const { return S(-f); }
static S identity() { return {}; }
friend class Point;
friend class Affine;
};
/** @brief Horizontal shearing.
* Points on the X axis will not move. Combine with translations to get a shear
* with a different invariant line.
* @ingroup Transforms */
class HShear
: public ShearBase<HShear>
{
public:
HShear() = default;
explicit HShear(Coord h) : ShearBase<HShear>(h) {}
operator Affine() const { return Affine(1, 0, f, 1, 0, 0); }
};
inline bool are_near(HShear const &a, HShear const &b, Coord eps=EPSILON) {
return are_near(a.factor(), b.factor(), eps);
}
/** @brief Vertical shearing.
* Points on the Y axis will not move. Combine with translations to get a shear
* with a different invariant line.
* @ingroup Transforms */
class VShear
: public ShearBase<VShear>
{
public:
VShear() = default;
explicit VShear(Coord h) : ShearBase<VShear>(h) {}
operator Affine() const { return Affine(1, f, 0, 1, 0, 0); }
};
inline bool are_near(VShear const &a, VShear const &b, Coord eps = EPSILON) {
return are_near(a.factor(), b.factor(), eps);
}
/** @brief Combination of a translation and uniform scale.
* The translation part is applied first, then the result is scaled from the new origin.
* This way when the class is used to accumulate a zoom transform, trans always points
* to the new origin in original coordinates.
* @ingroup Transforms */
class Zoom
: public TransformOperations< Zoom >
{
Coord _scale = 1;
Point _trans;
public:
Zoom() = default;
/// Construct a zoom from a scaling factor.
explicit Zoom(Coord s) : _scale(s) {}
/// Construct a zoom from a translation.
explicit Zoom(Point const &t) : _trans(t) {}
explicit Zoom(Translate const &t) : Zoom(t.vector()) {}
/// Construct a zoom from a scaling factor and a translation.
Zoom(Coord s, Point const &t) : _scale(s), _trans(t) {}
Zoom(Coord s, Translate const &t) : Zoom(s, t.vector()) {}
operator Affine() const {
return Affine(_scale, 0, 0, _scale, _trans[X] * _scale, _trans[Y] * _scale);
}
Zoom &operator*=(Zoom const &z) {
_trans += z._trans / _scale;
_scale *= z._scale;
return *this;
}
bool operator==(Zoom const &z) const { return _scale == z._scale && _trans == z._trans; }
Coord scale() const { return _scale; }
void setScale(Coord s) { _scale = s; }
Point translation() const { return _trans; }
void setTranslation(Point const &p) { _trans = p; }
Zoom inverse() const { return Zoom(1 / _scale, Translate(-_trans * _scale)); }
static Zoom identity() { return {}; }
static Zoom map_rect(Rect const &old_r, Rect const &new_r);
friend class Point;
friend class Affine;
};
inline bool are_near(Zoom const &a, Zoom const &b, Coord eps = EPSILON) {
return are_near(a.scale(), b.scale(), eps) &&
are_near(a.translation(), b.translation(), eps);
}
/** @brief Specialization of exponentiation for Scale.
* @relates Scale */
template<>
inline Scale pow(Scale const &s, int n) {
return Scale(::pow(s[X], n), ::pow(s[Y], n));
}
/** @brief Specialization of exponentiation for Translate.
* @relates Translate */
template<>
inline Translate pow(Translate const &t, int n) {
return Translate(t[X] * n, t[Y] * n);
}
/** @brief Reflects objects about line.
* The line, defined by a vector along the line and a point on it, acts as a mirror.
* @ingroup Transforms
* @see Line::reflection()
*/
Affine reflection(Point const & vector, Point const & origin);
//TODO: decomposition of Affine into some finite combination of the above classes
} // namespace Geom
#endif // LIB2GEOM_SEEN_TRANSFORMS_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|