1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/** @file
* @brief Unit tests for PlanarGraph class template
*/
/*
* Authors:
* Rafał Siejakowski <rs@rs-math.net>
*
* Copyright 2022 the Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <gtest/gtest.h>
#include <iostream>
#include <2geom/point.h>
#include <2geom/pathvector.h>
#include <2geom/svg-path-parser.h>
#include <2geom/svg-path-writer.h>
#include "planar-graph.h"
#include "testing.h"
using namespace Geom;
#define PV(d) (parse_svg_path(d))
#define PTH(d) (std::move(PV(d)[0]))
#define REV(d) ((PV(d)[0]).reversed())
/** An edge label for the purpose of tests. */
struct TestLabel
{
unsigned reversal_count = 0, merge_count = 0, detachment_count = 0;
void onReverse() { reversal_count++; }
void onMergeWith(TestLabel const &) { merge_count++; }
void onDetach() { detachment_count++; }
};
using TestGraph = PlanarGraph<TestLabel>;
static std::vector<TestLabel> extract_labels(TestGraph const &graph)
{
// Find labels of edges remaining in the graph.
std::vector<TestLabel> result;
for (auto &e : graph.getEdges()) {
if (!e.detached) {
result.push_back(e.label);
}
}
return result;
}
class PlanarGraphTest : public ::testing::Test
{
};
/** Test edge insertion and vertex clumping to within the tolerance. */
TEST(PlanarGraphTest, EdgeInsertion)
{
double const precision = 1e-3;
auto graph = TestGraph(precision);
graph.insertEdge(PTH("M 0, 0 L 1, 0"));
graph.insertEdge(PTH("M 0, 1 L 1, 1")); // } Endpoints near
graph.insertEdge(PTH("M 1, 0 L 1, 1.0009")); // } but not exact.
auto vertices = graph.getVertices();
// Test vertex clumping within the given precision
EXPECT_EQ(vertices.size(), 4);
EXPECT_EQ(graph.numEdges(), 3);
// Test lexicographic vertex position sorting by X and then Y
EXPECT_EQ(vertices.front().point(), Point(0, 0));
auto after = std::next(vertices.begin());
EXPECT_EQ(after->point(), Point(0, 1));
++after;
EXPECT_EQ(after->point(), Point(1, 0));
EXPECT_TRUE(are_near(vertices.back().point(), Point(1, 1), precision));
EXPECT_FALSE(graph.isRegularized());
}
/** Test PlanarGraph<T>::insertDetached(). */
TEST(PlanarGraphTest, InsertDetached)
{
TestGraph graph;
auto detached = graph.insertDetached(PTH("M 0,0 A 1,1 0,0,1 2,0 V -2 H 0 Z"));
auto const &edges = graph.getEdges();
EXPECT_EQ(edges.size(), 1);
EXPECT_TRUE(edges.at(detached).detached);
EXPECT_TRUE(edges.at(detached).inserted_as_detached);
EXPECT_EQ(graph.numVertices(), 0);
EXPECT_EQ(graph.numEdges(false), 0);
EXPECT_TRUE(graph.isRegularized());
}
/** Test signed area calculation. */
TEST(PlanarGraphTest, ClosedPathArea)
{
// Square with counter-clockwise oriented boundary, when imagining that the y-axis
// points up – expect the area to be +1.
auto square_positive = PTH("M 0,0 H 1 V 1 H 0 Z");
EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(square_positive), 1.0);
// Expect negative area for a negatively oriented path.
auto triangle_negative = PTH("M 0,0 V 1 L 1,1 Z");
EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(triangle_negative), -0.5);
}
/** Test the detection of direction of deviation of initially tangent paths. */
TEST(PlanarGraphTest, Deviation)
{
auto vertical_up = PTH("M 0,0 V 1");
auto arc_right1 = PTH("M 0,0 A 1,1 0,1,0 2,0");
auto arc_left1 = PTH("M 0,0 A 1,1 0,1,1 -2,0");
auto arc_right2 = PTH("M 0,0 A 2,2 0,1,0, 4,0");
auto arc_left2 = PTH("M 0,0 A 2,2 0,1,1 -4,0");
// A very "flat" Bézier curve deviating to the right but slower than the large arc
auto bezier_right = PTH("M 0,0 C 0,50 1,20 2,10");
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_left2));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, vertical_up));
EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, arc_right2));
EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, bezier_right));
EXPECT_TRUE(TestGraph::deviatesLeft(bezier_right, arc_right2));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_right2, arc_right1));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_right1));
EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, arc_right1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, vertical_up));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_right2));
EXPECT_FALSE(TestGraph::deviatesLeft(vertical_up, arc_left2));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_left2, arc_left1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left1));
EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left2));
}
/** Test sorting of incidences at a vertex by the outgoing heading. */
TEST(PlanarGraphTest, BasicAzimuthalSort)
{
TestGraph graph;
// Imagine the Y-axis pointing up (as in mathematics)!
bool const clockwise = true;
unsigned const num_rays = 9;
unsigned edges[num_rays];
// Insert the edges randomly but store them in what we know to be the
// clockwise order of outgoing azimuths from the vertex at the origin.
edges[7] = graph.insertEdge(PTH("M -0.2, -1 L 0, 0"));
edges[1] = graph.insertEdge(PTH("M -1, 0.2 L 0, 0"));
edges[4] = graph.insertEdge(PTH("M 0, 0 L 1, 0.2"));
edges[6] = graph.insertEdge(PTH("M 0.1, -1 L 0, 0"));
edges[2] = graph.insertEdge(PTH("M 0, 0 L -0.3, 1"));
edges[0] = graph.insertEdge(PTH("M -1, 0 H 0"));
edges[5] = graph.insertEdge(PTH("M 0, 0 L 1, -0.2"));
edges[3] = graph.insertEdge(PTH("M 0.2, 1 L 0, 0"));
edges[8] = graph.insertEdge(PTH("M -1, -0.1 L 0, 0"));
// We expect the incidence to edges[0] to be the last one
// in the sort order so it should appear first when going clockwise.
auto [origin, incidence] = graph.getIncidence(edges[0], TestGraph::Incidence::END);
ASSERT_TRUE(origin);
ASSERT_TRUE(incidence);
// Expect ±pi as the azimuth
EXPECT_DOUBLE_EQ(std::abs(incidence->azimuth), M_PI);
// Test sort order
for (unsigned i = 0; i < num_rays; i++) {
EXPECT_EQ(incidence->index, edges[i]);
incidence = (TestGraph::Incidence *)&graph.nextIncidence(*origin, *incidence, clockwise);
}
}
/** Test retrieval of a path inserted as an edge in both orientations. */
TEST(PlanarGraphTest, PathRetrieval)
{
TestGraph graph;
Path const path = PTH("M 0,0 L 1,1 C 2,2 4,2 5,1");
Path const htap = path.reversed();
auto edge = graph.insertEdge(path);
ASSERT_EQ(graph.numEdges(), 1);
auto [start_point, start_incidence] = graph.getIncidence(edge, TestGraph::Incidence::START);
ASSERT_TRUE(start_point);
ASSERT_TRUE(start_incidence);
EXPECT_EQ(graph.getOutgoingPath(start_incidence), path);
EXPECT_EQ(graph.getIncomingPath(start_incidence), htap);
auto [end_point, end_incidence] = graph.getIncidence(edge, TestGraph::Incidence::END);
ASSERT_TRUE(end_point);
ASSERT_TRUE(end_incidence);
EXPECT_EQ(graph.getIncomingPath(end_incidence), path);
EXPECT_EQ(graph.getOutgoingPath(end_incidence), htap);
}
/** Make sure the edge labels are correctly stored. */
TEST(PlanarGraphTest, LabelRetrieval)
{
TestGraph graph;
TestLabel label;
label.reversal_count = 420;
label.merge_count = 69;
label.detachment_count = 111;
auto edge = graph.insertEdge(PTH("M 0,0 L 1,1"), std::move(label));
auto retrieved = graph.getEdge(edge).label;
EXPECT_EQ(retrieved.reversal_count, 420);
EXPECT_EQ(retrieved.merge_count, 69);
EXPECT_EQ(retrieved.detachment_count, 111);
}
/** Regularization of duplicate edges. */
TEST(PlanarGraphTest, MergeDuplicate)
{
char const *const d = "M 2, 3 H 0 C 1,4 1,5 0,6 H 10 L 8, 0";
char const *const near_d = "M 2.0009,3 H 0 C 1,4 1,5 0,6 H 10.0009 L 8, 0.0005";
// Test removal of perfect overlap:
TestGraph graph;
graph.insertEdge(PTH(d));
graph.insertEdge(PTH(d)); // exact duplicate
graph.regularize();
EXPECT_TRUE(graph.isRegularized());
auto remaining = extract_labels(graph);
// Expect there to be only 1 edge after regularization.
ASSERT_EQ(remaining.size(), 1);
EXPECT_EQ(remaining[0].merge_count, 1); // expect one merge,
EXPECT_EQ(remaining[0].reversal_count, 0); // no reversals,
EXPECT_EQ(remaining[0].detachment_count, 0); // no detachments.
// Test removal of imperfect overlaps within numerical precision
TestGraph fuzzy{1e-3};
fuzzy.insertEdge(PTH(d));
fuzzy.insertEdge(PTH(near_d));
fuzzy.regularize();
EXPECT_TRUE(fuzzy.isRegularized());
auto fuzmaining = extract_labels(fuzzy);
ASSERT_EQ(fuzmaining.size(), 1);
EXPECT_EQ(fuzmaining[0].merge_count, 1); // expect one merge,
EXPECT_EQ(fuzmaining[0].reversal_count, 0); // no reversals,
EXPECT_EQ(fuzmaining[0].detachment_count, 0); // no detachments.
// Test overlap of edges with oppositie orientations.
TestGraph twoway;
twoway.insertEdge(PTH(d));
twoway.insertEdge(REV(d));
twoway.regularize();
EXPECT_TRUE(twoway.isRegularized());
auto left = extract_labels(twoway);
ASSERT_EQ(left.size(), 1);
EXPECT_EQ(left[0].merge_count, 1); // expect one merge,
EXPECT_TRUE(left[0].reversal_count == 0 || left[0].reversal_count == 1); // 0 or 1 reversals
EXPECT_EQ(left[0].detachment_count, 0); // no detachments.
}
/** Regularization of a shorter edge overlapping a longer one. */
TEST(PlanarGraphTest, MergePartial)
{
TestGraph graph;
auto longer = graph.insertEdge(PTH("M 0, 0 L 10, 10"));
auto shorter = graph.insertEdge(PTH("M 0, 0 L 6, 6"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 3);
EXPECT_TRUE(graph.isRegularized());
auto labels = extract_labels(graph);
ASSERT_EQ(labels.size(), 2);
EXPECT_EQ(labels[longer].merge_count, 0);
EXPECT_EQ(labels[longer].reversal_count, 0);
EXPECT_EQ(labels[longer].detachment_count, 0);
EXPECT_EQ(labels[shorter].merge_count, 1);
EXPECT_EQ(labels[shorter].reversal_count, 0);
EXPECT_EQ(labels[shorter].detachment_count, 0);
// Now the same thing but with edges of opposite orientations.
TestGraph graphopp;
longer = graphopp.insertEdge(PTH("M 0, 0 L 10, 0"));
shorter = graphopp.insertEdge(PTH("M 10, 0 L 5, 0"));
EXPECT_EQ(graphopp.numVertices(), 3);
graphopp.regularize();
EXPECT_EQ(graphopp.numVertices(), 3);
EXPECT_TRUE(graphopp.isRegularized());
labels = extract_labels(graphopp);
ASSERT_EQ(labels.size(), 2);
EXPECT_EQ(labels[longer].merge_count, 0);
EXPECT_EQ(labels[longer].reversal_count, 0);
EXPECT_EQ(labels[longer].detachment_count, 0);
EXPECT_EQ(labels[shorter].merge_count, 1);
EXPECT_EQ(labels[shorter].reversal_count, 0);
EXPECT_EQ(labels[shorter].detachment_count, 0);
}
/** Regularization of a Y-split. */
TEST(PlanarGraphTest, MergeY)
{
TestGraph graph;
auto left = graph.insertEdge(PTH("M 1 0 V 1 L 0, 2"));
auto right = graph.insertEdge(PTH("M 1,0 V 1 L 2, 2"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 4);
auto edges = graph.getEdges();
EXPECT_EQ(edges.size(), 3);
EXPECT_TRUE(are_near(edges[right].start->point(), Point(1, 1)));
}
/** Test reversal of a wrongly oriented teardrop */
TEST(PlanarGraphTest, Teardrop)
{
TestGraph graph;
auto loop = graph.insertEdge(PTH("M 1,0 A 1,1, 0,0,1 0,1 L 2,2 V 1 H 1 V 0"));
// Insert a few unrelated edges
auto before = graph.insertEdge(PTH("M 1,0 H 10"));
auto after = graph.insertEdge(PTH("M 1,0 H -10"));
EXPECT_EQ(graph.numVertices(), 3);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 3);
auto [start_vertex, start_incidence] = graph.getIncidence(loop, TestGraph::Incidence::START);
auto [end_vertex, end_incidence] = graph.getIncidence(loop, TestGraph::Incidence::END);
EXPECT_EQ(start_vertex, end_vertex);
ASSERT_NE(start_vertex, nullptr);
// Check that the incidences have been swapped
EXPECT_EQ(start_vertex->cyclicNextIncidence(end_incidence), start_incidence);
EXPECT_EQ(start_vertex->cyclicPrevIncidence(start_incidence), end_incidence);
auto [b, before_incidence] = graph.getIncidence(before, TestGraph::Incidence::START);
EXPECT_EQ(start_vertex->cyclicNextIncidence(before_incidence), end_incidence);
auto [a, after_incidence] = graph.getIncidence(after, TestGraph::Incidence::START);
EXPECT_EQ(start_vertex->cyclicPrevIncidence(after_incidence), start_incidence);
}
/** Test the regularization of a lasso-shaped path. */
TEST(PlanarGraphTest, ReglueLasso)
{
TestGraph graph;
// Insert a lasso-shaped path (a teardrop with initial self-overlap).
auto original_lasso = graph.insertEdge(PTH("M 0,0 V 1 C 0,2 1,3 1,4 "
"A 1,1 0,1,1 -1,4 C -1,3 0,2 0,1 V 0"));
EXPECT_EQ(graph.numVertices(), 1);
graph.regularize();
EXPECT_EQ(graph.numVertices(), 2);
EXPECT_EQ(graph.numEdges(false), 2);
EXPECT_TRUE(graph.getEdge(original_lasso).detached);
auto const &edges = graph.getEdges();
// Find the edge from origin and ensure it got glued.
auto from_origin = std::find_if(edges.begin(), edges.end(), [](auto const &edge) -> bool {
return !edge.detached && (edge.start->point() == Point(0, 0) ||
edge.end->point() == Point(0, 0));
});
ASSERT_NE(from_origin, edges.end());
ASSERT_EQ(from_origin->label.merge_count, 1);
}
/** Test the removal of a collapsed loop. */
TEST(PlanarGraphTest, RemoveCollapsed)
{
TestGraph graph;
// Insert a collapsed loop
auto collapsed = graph.insertEdge(PTH("M 0,0 L 1,1 L 0,0"));
ASSERT_EQ(graph.numEdges(), 1);
graph.regularize();
ASSERT_EQ(graph.numEdges(false), 0);
ASSERT_TRUE(graph.getEdge(collapsed).detached);
TestGraph fuzzy(1e-3);
// Insert a nearly collapsed loop
auto nearly = fuzzy.insertEdge(PTH("M 0,0 H 2 V 0.001 L 1,0 H 0"));
ASSERT_EQ(fuzzy.numEdges(), 1);
fuzzy.regularize();
ASSERT_EQ(fuzzy.numEdges(false), 0);
ASSERT_TRUE(fuzzy.getEdge(nearly).detached);
}
/** Test regularization of straddling runs. */
TEST(PlanarGraphTest, RemoveWisp)
{
TestGraph graph;
// Insert a horizontal segment at the origin towards positive X:
graph.insertEdge(PTH("M 0 0 H 1"));
// Insert a path with a collapsed Bézier curve towards negative X:
graph.insertEdge(PTH("M 0 0 C -1 0 -1 0 0 0"));
graph.regularize();
// Ensure that the folded Bézier is removed (and no segfault occurs).
EXPECT_EQ(graph.numEdges(false), 1);
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|