File: NMR_Vector.cpp

package info (click to toggle)
lib3mf 1.8.1%2Bds-5
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 12,636 kB
  • sloc: cpp: 34,988; ansic: 4,255; sh: 109; makefile: 12
file content (723 lines) | stat: -rw-r--r-- 21,090 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*++

Copyright (C) 2018 3MF Consortium

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Abstract:

NMR_Vector.cpp implements all needed direct operations on 2D and 3D vectors.

--*/

#include "Common/Math/NMR_Geometry.h" 
#include "Common/Math/NMR_Vector.h" 
#include "Common/NMR_Exception.h" 
#include <cmath>
#include <algorithm>
#include <limits>

namespace NMR {

	NVEC2 fnVEC2_make(_In_ nfFloat fX, _In_ nfFloat fY)
	{
		NVEC2 vResult;
		vResult.m_values.x = fX;
		vResult.m_values.y = fY;
		return vResult;
	}

	NVEC2 fnVEC2_add(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
	{
		nfInt32 j;
		NVEC2 vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];

		return vResult;
	}

	NVEC2 fnVEC2_sub(_In_ const NVEC2 vMinuend, _In_ const NVEC2 vSubtrahend)
	{
		nfInt32 j;
		NVEC2 vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];

		return vResult;
	}


	NVEC2 fnVEC2_scale(_In_ const NVEC2 vVector, _In_ nfFloat vFactor)
	{
		nfInt32 j;
		NVEC2 vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vVector.m_fields[j] * vFactor;

		return vResult;
	}

	NVEC2 fnVEC2_combine(_In_ const NVEC2 vVector1, _In_ nfFloat vFactor1, _In_ const NVEC2 vVector2, _In_ nfFloat vFactor2)
	{
		nfInt32 j;
		NVEC2 vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] * vFactor1 + vVector2.m_fields[j] * vFactor2;

		return vResult;
	}

	nfFloat fnVEC2_dotproduct(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
	{
		return vVector1.m_values.x * vVector2.m_values.x + vVector1.m_values.y * vVector2.m_values.y;
	}

	nfFloat fnVEC2_crossproduct(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
	{
		return vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;
	}

	nfFloat fnVEC2_length(_In_ const NVEC2 vVector)
	{
		return sqrtf(vVector.m_values.x * vVector.m_values.x + vVector.m_values.y * vVector.m_values.y);
	}

	nfFloat fnVEC2_distance(_In_ const NVEC2 vPoint1, _In_ const NVEC2 vPoint2)
	{
		return fnVEC2_length(fnVEC2_sub(vPoint1, vPoint2));
	}

	NVEC2 fnVEC2_normalize(_In_ const NVEC2 vVector)
	{
		nfFloat fLength = fnVEC2_length(vVector);
		if (fLength < NMR_VECTOR_MINNORMALIZELENGTH)
			throw CNMRException(NMR_ERROR_NORMALIZEDZEROVECTOR);

		return fnVEC2_scale(vVector, 1.0f / fLength);
	}

	NVEC2I fnVEC2I_make(_In_ nfInt32 nX, _In_ nfInt32 nY)
	{
		NVEC2I vResult;
		vResult.m_values.x = nX;
		vResult.m_values.y = nY;
		return vResult;
	}

	NVEC2I fnVEC2I_floor(_In_ NVEC2 vVector, _In_ nfFloat fUnits)
	{
		if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
			throw CNMRException(NMR_ERROR_INVALIDUNITS);

		NVEC2I vResult;
		vResult.m_values.x = (nfInt32) floor(vVector.m_values.x / fUnits);
		vResult.m_values.y = (nfInt32) floor(vVector.m_values.y / fUnits);
		return vResult;
	}

	NVEC2 fnVEC2I_uncast(_In_ NVEC2I vVector, _In_ nfFloat fUnits)
	{
		if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
			throw CNMRException(NMR_ERROR_INVALIDUNITS);

		NVEC2 vResult;
		vResult.m_values.x = (nfFloat)(vVector.m_values.x) * fUnits;
		vResult.m_values.y = (nfFloat)(vVector.m_values.y) * fUnits;
		return vResult;
	}

	NVEC2I fnVEC2I_add(_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
	{
		nfInt32 j;
		NVEC2I vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];

		return vResult;
	}

	NVEC2I fnVEC2I_sub(_In_ const NVEC2I vMinuend, _In_ const NVEC2I vSubtrahend)
	{
		nfInt32 j;
		NVEC2I vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];

		return vResult;
	}

	NVEC2I fnVEC2I_scale(_In_ const NVEC2I vVector, _In_ nfInt32 vFactor)
	{
		nfInt32 j;
		NVEC2I vResult;

		for (j = 0; j < 2; j++)
			vResult.m_fields[j] = vVector.m_fields[j] * vFactor;

		return vResult;
	}

	nfInt64 fnVEC2I_dotproduct(_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
	{
		nfInt64 v1x = vVector1.m_values.x;
		nfInt64 v1y = vVector1.m_values.y;
		nfInt64 v2x = vVector2.m_values.x;
		nfInt64 v2y = vVector2.m_values.y;
		return v1x * v2x + v1y * v2y;
	}

	nfFloat fnVEC2I_length(_In_ const NVEC2I vVector)
	{
		nfInt64 vx = vVector.m_values.x;
		nfInt64 vy = vVector.m_values.y;
		nfInt64 dotproduct = vx * vx + vy * vy;
		return sqrtf((nfFloat)dotproduct);
	}

	nfFloat fnVEC2I_distance(_In_ const NVEC2I vPoint1, _In_ const NVEC2I vPoint2)
	{
		return fnVEC2I_length(fnVEC2I_sub(vPoint1, vPoint2));
	}

	NVEC3 fnVEC3_make(_In_ nfFloat fX, _In_ nfFloat fY, _In_ nfFloat fZ)
	{
		NVEC3 vResult;
		vResult.m_values.x = fX;
		vResult.m_values.y = fY;
		vResult.m_values.z = fZ;
		return vResult;
	}

	NVEC3I fnVEC3I_floor(_In_ NVEC3 vVector, _In_ nfFloat fUnits)
	{
		if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
			throw CNMRException(NMR_ERROR_INVALIDUNITS);

		NVEC3I vResult;
		vResult.m_values.x = (nfInt32) floor(vVector.m_values.x / fUnits);
		vResult.m_values.y = (nfInt32) floor(vVector.m_values.y / fUnits);
		vResult.m_values.z = (nfInt32) floor(vVector.m_values.z / fUnits);
		return vResult;
	}

	NVEC3I fnVEC3I_round(_In_ NVEC3 vVector, _In_ nfFloat fUnits)
	{
		if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
			throw CNMRException(NMR_ERROR_INVALIDUNITS);

		NVEC3I vResult;
		vResult.m_values.x = (nfInt32)round(vVector.m_values.x / fUnits);
		vResult.m_values.y = (nfInt32)round(vVector.m_values.y / fUnits);
		vResult.m_values.z = (nfInt32)round(vVector.m_values.z / fUnits);
		return vResult;
	}

	NVEC3 fnVEC3I_uncast(_In_ NVEC3I vVector, _In_ nfFloat fUnits)
	{
		if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
			throw CNMRException(NMR_ERROR_INVALIDUNITS);

		NVEC3 vResult;
		vResult.m_values.x = (nfFloat)(vVector.m_values.x) * fUnits;
		vResult.m_values.y = (nfFloat)(vVector.m_values.y) * fUnits;
		vResult.m_values.z = (nfFloat)(vVector.m_values.z) * fUnits;
		return vResult;
	}

	NVEC3 fnVEC3_add(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
	{
		nfInt32 j;
		NVEC3 vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];

		return vResult;
	}

	NVEC3 fnVEC3_sub(_In_ const NVEC3 vMinuend, _In_ const NVEC3 vSubtrahend)
	{
		nfInt32 j;
		NVEC3 vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];

		return vResult;
	}

	NVEC3 fnVEC3_scale(_In_ const NVEC3 vVector, _In_ nfFloat vFactor)
	{
		nfInt32 j;
		NVEC3 vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vVector.m_fields[j] * vFactor;

		return vResult;
	}

	NVEC3 fnVEC3_combine(_In_ const NVEC3 vVector1, _In_ nfFloat vFactor1, _In_ const NVEC3 vVector2, _In_ nfFloat vFactor2)
	{
		nfInt32 j;
		NVEC3 vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] * vFactor1 + vVector2.m_fields[j] * vFactor2;

		return vResult;
	}

	nfFloat fnVEC3_dotproduct(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
	{
		return vVector1.m_values.x * vVector2.m_values.x +
			vVector1.m_values.y * vVector2.m_values.y +
			vVector1.m_values.z * vVector2.m_values.z;
	}

	NVEC3 fnVEC3_crossproduct(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
	{
		NVEC3 vResult;

		vResult.m_values.x = vVector1.m_values.y * vVector2.m_values.z - vVector1.m_values.z * vVector2.m_values.y;
		vResult.m_values.y = vVector1.m_values.z * vVector2.m_values.x - vVector1.m_values.x * vVector2.m_values.z;
		vResult.m_values.z = vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;

		return vResult;
	}

	nfFloat fnVEC3_length(_In_ const NVEC3 vVector)
	{
		return sqrtf(vVector.m_values.x * vVector.m_values.x + vVector.m_values.y * vVector.m_values.y + vVector.m_values.z * vVector.m_values.z);
	}

	nfFloat fnVEC3_distance(_In_ const NVEC3 vPoint1, _In_ const NVEC3 vPoint2)
	{
		return fnVEC3_length(fnVEC3_sub(vPoint1, vPoint2));
	}

	NVEC3 fnVEC3_normalize(_In_ const NVEC3 vVector)
	{
		nfFloat fLength = fnVEC3_length(vVector);
		if (fLength < NMR_VECTOR_MINNORMALIZELENGTH)
			throw CNMRException(NMR_ERROR_NORMALIZEDZEROVECTOR);

		return fnVEC3_scale(vVector, 1.0f / fLength);
	}

	NVEC3 fnVEC3_calcTriangleNormal(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2, _In_ const NVEC3 vVector3)
	{
		NVEC3 vVectorU = fnVEC3_sub(vVector2, vVector1);
		NVEC3 vVectorV = fnVEC3_sub(vVector3, vVector1);
		NVEC3 vResult = fnVEC3_crossproduct(vVectorU, vVectorV);
		nfFloat fLength = fnVEC3_length(vResult);

		if (fLength > NMR_VECTOR_MINNORMALIZELENGTH)
			return fnVEC3_scale(vResult, 1.0f / fLength);
		else
			return fnVEC3_make(0.0f, 0.0f, 0.0f);
	}

	NVEC3I fnVEC3I_make(_In_ nfInt32 nX, _In_ nfInt32 nY, _In_ nfInt32 nZ)
	{
		NVEC3I vResult;
		vResult.m_values.x = nX;
		vResult.m_values.y = nY;
		vResult.m_values.z = nZ;
		return vResult;
	}

	NVEC3I fnVEC3I_add(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		nfInt32 j;
		NVEC3I vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];

		return vResult;
	}

	NVEC3I fnVEC3I_sub(_In_ const NVEC3I vMinuend, _In_ const NVEC3I vSubtrahend)
	{
		nfInt32 j;
		NVEC3I vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];

		return vResult;
	}

	NVEC3I fnVEC3I_scale(_In_ const NVEC3I vVector, _In_ nfInt32 vFactor)
	{
		nfInt32 j;
		NVEC3I vResult;

		for (j = 0; j < 3; j++)
			vResult.m_fields[j] = vVector.m_fields[j] * vFactor;

		return vResult;
	}

	nfInt64 fnVEC3I_dotproduct(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		nfInt64 v1x = vVector1.m_values.x;
		nfInt64 v1y = vVector1.m_values.y;
		nfInt64 v1z = vVector1.m_values.z;
		nfInt64 v2x = vVector2.m_values.x;
		nfInt64 v2y = vVector2.m_values.y;
		nfInt64 v2z = vVector2.m_values.z;
		return v1x * v2x + v1y * v2y + v1z * v2z;
	}

	nfFloat fnVEC3I_length(_In_ const NVEC3I vVector)
	{
		nfInt64 vx = vVector.m_values.x;
		nfInt64 vy = vVector.m_values.y;
		nfInt64 vz = vVector.m_values.z;
		nfInt64 dotproduct = vx * vx + vy * vy + vz * vz;
		return sqrtf((nfFloat)dotproduct);
	}

	nfFloat fnVEC3I_distance(_In_ const NVEC3I vPoint1, _In_ const NVEC3I vPoint2)
	{
		return fnVEC3I_length(fnVEC3I_sub(vPoint1, vPoint2));
	}

	nfInt32 fnVEC3I_comparelexicographic(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		nfInt32 nResult = fnInt32_compare(vVector1.m_fields[0], vVector2.m_fields[0]);
		if (nResult == 0) {
			nResult = fnInt32_compare(vVector1.m_fields[1], vVector2.m_fields[1]);
			if (nResult == 0)
				nResult = fnInt32_compare(vVector1.m_fields[2], vVector2.m_fields[2]);
		}
		return nResult;
	}

	nfBool fnVEC3I_iszero(_In_ const NVEC3I vVector)
	{
		return ((vVector.m_fields[0] == 0) && (vVector.m_fields[1] == 0) && (vVector.m_fields[2] == 0));
	}

	NVEC3I fnVEC3I_crossproduct(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2) 
	{
		NVEC3I vResult;
		// Attention! there may be a int32 overflow
		vResult.m_values.x = vVector1.m_values.y * vVector2.m_values.z - vVector1.m_values.z * vVector2.m_values.y;
		vResult.m_values.y = vVector1.m_values.z * vVector2.m_values.x - vVector1.m_values.x * vVector2.m_values.z;
		vResult.m_values.z = vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;

		return vResult;
	}

	NVEC3I64 fnVEC3I_crossproduct64(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		NVEC3I64 vResult;
		vResult.m_values.x = nfInt64(vVector1.m_values.y) * nfInt64(vVector2.m_values.z) - nfInt64(vVector1.m_values.z) * nfInt64(vVector2.m_values.y);
		vResult.m_values.y = nfInt64(vVector1.m_values.z) * nfInt64(vVector2.m_values.x) - nfInt64(vVector1.m_values.x) * nfInt64(vVector2.m_values.z);
		vResult.m_values.z = nfInt64(vVector1.m_values.x) * nfInt64(vVector2.m_values.y) - nfInt64(vVector1.m_values.y) * nfInt64(vVector2.m_values.x);

		return vResult;
	}

	nfBool fnVEC3I_triangleIsDegenerate(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2, _In_ const NVEC3I vVector3)
	{
		NVEC3I vU = fnVEC3I_sub(vVector2, vVector1);
		NVEC3I vV = fnVEC3I_sub(vVector3, vVector1);

		NVEC3I64 vNormal = fnVEC3I_crossproduct64(vU, vV);

		return ((vNormal.m_fields[0] == 0) && (vNormal.m_fields[1] == 0) && (vNormal.m_fields[2] == 0));
	}

	NVEC3I fnVEC3I_setOrderedVector(_In_ nfInt32 nValue1, _In_ nfInt32 nValue2, _In_ nfInt32 nValue3)
	{
		NVEC3I vResult;

		if ((nValue1 <= nValue2) && (nValue1 <= nValue3)) {
			vResult.m_fields[0] = nValue1;
			if (nValue2 <= nValue3) {
				vResult.m_fields[1] = nValue2;
				vResult.m_fields[2] = nValue3;
			}
			else {
				vResult.m_fields[1] = nValue3;
				vResult.m_fields[2] = nValue2;
			}
		} 
		else if ((nValue2 <= nValue1) && (nValue2 <= nValue3)) {
			vResult.m_fields[0] = nValue2;
			if (nValue1 <= nValue3) {
				vResult.m_fields[1] = nValue1;
				vResult.m_fields[2] = nValue3;
			}
			else {
				vResult.m_fields[1] = nValue3;
				vResult.m_fields[2] = nValue1;
			}
		}
		else {
			vResult.m_fields[0] = nValue3;
			if (nValue1 <= nValue2) {
				vResult.m_fields[1] = nValue1;
				vResult.m_fields[2] = nValue2;
			}
			else {
				vResult.m_fields[1] = nValue2;
				vResult.m_fields[2] = nValue1;
			}
		}

		return vResult;
	}

	nfBool fnVEC3I_checkForCollinearity(_In_ NVEC3I vVector1, _In_ NVEC3I vVector2)
	{
		if (vVector1.m_fields[1] * vVector2.m_fields[2] != vVector1.m_fields[2] * vVector2.m_fields[1])
			return false;
		if (vVector1.m_fields[2] * vVector2.m_fields[0] != vVector1.m_fields[0] * vVector2.m_fields[2])
			return false;
		if (vVector1.m_fields[0] * vVector2.m_fields[1] != vVector1.m_fields[1] * vVector2.m_fields[0])
			return false;
		// else
		return true;
	}

	NVEC2 operator+ (_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
	{
		return fnVEC2_add(vVector1, vVector2);
	}

	NVEC2 operator- (_In_ const NVEC2 vMinuend, _In_ const NVEC2 vSubtrahend)
	{
		return fnVEC2_sub(vMinuend, vSubtrahend);
	}

	NVEC2 operator* (_In_ const NVEC2 vVector, _In_ nfFloat vFactor)
	{
		return fnVEC2_scale(vVector, vFactor);
	}

	NVEC2 operator* (_In_ nfFloat vFactor, _In_ const NVEC2 vVector)
	{
		return fnVEC2_scale(vVector, vFactor);
	}

	nfFloat operator* (_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
	{
		return fnVEC2_dotproduct(vVector1, vVector2);
	}

	NVEC2I operator+ (_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
	{
		return fnVEC2I_add(vVector1, vVector2);
	}

	NVEC2I operator- (_In_ const NVEC2I vMinuend, _In_ const NVEC2I vSubtrahend)
	{
		return fnVEC2I_sub(vMinuend, vSubtrahend);
	}

	NVEC2I operator* (_In_ const NVEC2I vVector, _In_ nfInt32 vFactor)
	{
		return fnVEC2I_scale(vVector, vFactor);
	}

	NVEC2I operator* (_In_ nfInt32 vFactor, _In_ const NVEC2I vVector)
	{
		return fnVEC2I_scale(vVector, vFactor);
	}

	nfUint64 operator* (_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
	{
		return fnVEC2I_dotproduct(vVector1, vVector2);
	}

	NVEC3 operator+ (_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
	{
		return fnVEC3_add(vVector1, vVector2);
	}

	NVEC3 operator- (_In_ const NVEC3 vMinuend, _In_ const NVEC3 vSubtrahend)
	{
		return fnVEC3_sub(vMinuend, vSubtrahend);
	}

	NVEC3 operator* (_In_ const NVEC3 vVector, nfFloat vFactor)
	{
		return fnVEC3_scale(vVector, vFactor);
	}

	NVEC3 operator* (nfFloat vFactor, _In_ const NVEC3 vVector)
	{
		return fnVEC3_scale(vVector, vFactor);
	}

	nfFloat operator* (_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
	{
		return fnVEC3_dotproduct(vVector1, vVector2);
	}

	NVEC3I operator+ (_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		return fnVEC3I_add(vVector1, vVector2);
	}

	NVEC3I operator- (_In_ const NVEC3I vMinuend, _In_ const NVEC3I vSubtrahend)
	{
		return fnVEC3I_sub(vMinuend, vSubtrahend);
	}

	NVEC3I operator* (_In_ const NVEC3I vVector, _In_ nfInt32 vFactor)
	{
		return fnVEC3I_scale(vVector, vFactor);
	}

	NVEC3I operator* (_In_ nfInt32 vFactor, _In_ const NVEC3I vVector)
	{
		return fnVEC3I_scale(vVector, vFactor);
	}

	nfUint64 operator* (_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
	{
		return fnVEC3I_dotproduct(vVector1, vVector2);
	}

	nfInt32 fnInt32_sign(_In_ nfInt32 nValue)
	{
		return nValue < 0 ? -1 : nValue > 0 ? 1 : 0;
	}

	nfInt32 fnInt64_sign(_In_ nfInt64 nValue) {
		return nValue < 0 ? -1 : nValue > 0 ? 1 : 0;
	}

	nfInt32 fnInt32_compare(_In_ nfInt32 nValue1, _In_ nfInt32 nValue2)
	{
		if (nValue1 > nValue2)
			return 1;
		else if (nValue1 < nValue2)
			return -1;
		else
			return 0;
	}

	nfInt32 fnInt64_compare(_In_ nfInt64 nValue1, _In_ nfInt64 nValue2)
	{
		if (nValue1 > nValue2)
			return 1;
		else if (nValue1 < nValue2)
			return -1;
		else
			return 0;
	}

	void fnOutboxInitialize(_Out_ NOUTBOX3 &oOutbox)
	{
		for (nfInt32 i = 0; i < 3; i++){
			oOutbox.m_max.m_fields[i] = -std::numeric_limits<nfFloat>::max();
			oOutbox.m_min.m_fields[i] = std::numeric_limits<nfFloat>::max();
		}
	}

	void fnOutboxMergeVector(_Inout_ NOUTBOX3 &oOutbox, _In_ NVEC3 vVector)
	{
		for (nfUint32 i = 0; i < 3; i++){
			oOutbox.m_min.m_fields[i] = std::min(oOutbox.m_min.m_fields[i], vVector.m_fields[i]);
			oOutbox.m_max.m_fields[i] = std::max(oOutbox.m_max.m_fields[i], vVector.m_fields[i]);
		}
	}

	void fnOutboxMergeOutbox(_Inout_ NOUTBOX3 &oOutboxDest, _In_ NOUTBOX3 &oOutboxSource)
	{
		fnOutboxMergeVector(oOutboxDest, oOutboxSource.m_max);
		fnOutboxMergeVector(oOutboxDest, oOutboxSource.m_min);
	}

	nfBool fnOutboxIsValid(_In_ const NOUTBOX3 oOutbox)
	{
		return ((fabs(oOutbox.m_min.m_values.x) < NMR_OUTBOX_MAXCOORDINATE) &&
			(fabs(oOutbox.m_min.m_values.y) < NMR_OUTBOX_MAXCOORDINATE) &&
			(fabs(oOutbox.m_min.m_values.z) < NMR_OUTBOX_MAXCOORDINATE) &&
			(fabs(oOutbox.m_max.m_values.x) < NMR_OUTBOX_MAXCOORDINATE) &&
			(fabs(oOutbox.m_max.m_values.y) < NMR_OUTBOX_MAXCOORDINATE) &&
			(fabs(oOutbox.m_max.m_values.z) < NMR_OUTBOX_MAXCOORDINATE));
	}

	void fnOutbox3IMergeVector(_Inout_ NOUTBOX3I &oOutbox, _In_ NVEC3I vVector)
	{
		for (nfUint32 i = 0; i < 3; i++) {
			if (vVector.m_fields[i] < oOutbox.m_vMin.m_fields[i])
				oOutbox.m_vMin.m_fields[i] = vVector.m_fields[i];
			if (vVector.m_fields[i] > oOutbox.m_vMax.m_fields[i])
				oOutbox.m_vMax.m_fields[i] = vVector.m_fields[i];
		}
	}

	void fnOutbox3IMergeOutbox(_Inout_ NOUTBOX3I &oOutboxDest, _In_ NOUTBOX3I &oOutboxSource)
	{
		for (nfUint32 i = 0; i < 3; i++) {
			if (oOutboxSource.m_vMin.m_fields[i] < oOutboxDest.m_vMin.m_fields[i])
				oOutboxDest.m_vMin.m_fields[i] = oOutboxSource.m_vMin.m_fields[i];
			if (oOutboxSource.m_vMax.m_fields[i] > oOutboxDest.m_vMax.m_fields[i])
				oOutboxDest.m_vMax.m_fields[i] = oOutboxSource.m_vMax.m_fields[i];
		}
	}

	NOUTBOX3I fnCalcTriangleOutbox3I(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2, _In_ const NVEC3I vVector3)
	{
		NOUTBOX3I oOutbox;
		oOutbox.m_vMin = vVector1;
		oOutbox.m_vMax = vVector1;
		fnOutbox3IMergeVector(oOutbox, vVector2);
		fnOutbox3IMergeVector(oOutbox, vVector3);

		return oOutbox;
	}

	nfBool fnOutbox3IDoIntersect(_In_ const NOUTBOX3I oOutbox1, _In_ const NOUTBOX3I oOutbox2)
	{
		nfBool bResult = true;
		nfBool bIntervalIntersects;
		for (nfUint32 i = 0; i < 3; i++) {
			bIntervalIntersects = (((oOutbox1.m_vMin.m_fields[i] >= oOutbox2.m_vMin.m_fields[i]) && (oOutbox1.m_vMin.m_fields[i] <= oOutbox2.m_vMax.m_fields[i]))
				|| ((oOutbox1.m_vMax.m_fields[i] >= oOutbox2.m_vMin.m_fields[i]) && (oOutbox1.m_vMax.m_fields[i] <= oOutbox2.m_vMax.m_fields[i]))
				|| ((oOutbox2.m_vMin.m_fields[i] >= oOutbox1.m_vMin.m_fields[i]) && (oOutbox2.m_vMin.m_fields[i] <= oOutbox1.m_vMax.m_fields[i]))
				|| ((oOutbox2.m_vMax.m_fields[i] >= oOutbox1.m_vMin.m_fields[i]) && (oOutbox2.m_vMax.m_fields[i] <= oOutbox1.m_vMax.m_fields[i])));
			
			bResult = bResult && bIntervalIntersects;
		}

		return bResult;
	}

}