1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
/*++
Copyright (C) 2018 3MF Consortium
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Abstract:
NMR_Vector.cpp implements all needed direct operations on 2D and 3D vectors.
--*/
#include "Common/Math/NMR_Geometry.h"
#include "Common/Math/NMR_Vector.h"
#include "Common/NMR_Exception.h"
#include <cmath>
#include <algorithm>
#include <limits>
namespace NMR {
NVEC2 fnVEC2_make(_In_ nfFloat fX, _In_ nfFloat fY)
{
NVEC2 vResult;
vResult.m_values.x = fX;
vResult.m_values.y = fY;
return vResult;
}
NVEC2 fnVEC2_add(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
{
nfInt32 j;
NVEC2 vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];
return vResult;
}
NVEC2 fnVEC2_sub(_In_ const NVEC2 vMinuend, _In_ const NVEC2 vSubtrahend)
{
nfInt32 j;
NVEC2 vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];
return vResult;
}
NVEC2 fnVEC2_scale(_In_ const NVEC2 vVector, _In_ nfFloat vFactor)
{
nfInt32 j;
NVEC2 vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vVector.m_fields[j] * vFactor;
return vResult;
}
NVEC2 fnVEC2_combine(_In_ const NVEC2 vVector1, _In_ nfFloat vFactor1, _In_ const NVEC2 vVector2, _In_ nfFloat vFactor2)
{
nfInt32 j;
NVEC2 vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vVector1.m_fields[j] * vFactor1 + vVector2.m_fields[j] * vFactor2;
return vResult;
}
nfFloat fnVEC2_dotproduct(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
{
return vVector1.m_values.x * vVector2.m_values.x + vVector1.m_values.y * vVector2.m_values.y;
}
nfFloat fnVEC2_crossproduct(_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
{
return vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;
}
nfFloat fnVEC2_length(_In_ const NVEC2 vVector)
{
return sqrtf(vVector.m_values.x * vVector.m_values.x + vVector.m_values.y * vVector.m_values.y);
}
nfFloat fnVEC2_distance(_In_ const NVEC2 vPoint1, _In_ const NVEC2 vPoint2)
{
return fnVEC2_length(fnVEC2_sub(vPoint1, vPoint2));
}
NVEC2 fnVEC2_normalize(_In_ const NVEC2 vVector)
{
nfFloat fLength = fnVEC2_length(vVector);
if (fLength < NMR_VECTOR_MINNORMALIZELENGTH)
throw CNMRException(NMR_ERROR_NORMALIZEDZEROVECTOR);
return fnVEC2_scale(vVector, 1.0f / fLength);
}
NVEC2I fnVEC2I_make(_In_ nfInt32 nX, _In_ nfInt32 nY)
{
NVEC2I vResult;
vResult.m_values.x = nX;
vResult.m_values.y = nY;
return vResult;
}
NVEC2I fnVEC2I_floor(_In_ NVEC2 vVector, _In_ nfFloat fUnits)
{
if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
throw CNMRException(NMR_ERROR_INVALIDUNITS);
NVEC2I vResult;
vResult.m_values.x = (nfInt32) floor(vVector.m_values.x / fUnits);
vResult.m_values.y = (nfInt32) floor(vVector.m_values.y / fUnits);
return vResult;
}
NVEC2 fnVEC2I_uncast(_In_ NVEC2I vVector, _In_ nfFloat fUnits)
{
if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
throw CNMRException(NMR_ERROR_INVALIDUNITS);
NVEC2 vResult;
vResult.m_values.x = (nfFloat)(vVector.m_values.x) * fUnits;
vResult.m_values.y = (nfFloat)(vVector.m_values.y) * fUnits;
return vResult;
}
NVEC2I fnVEC2I_add(_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
{
nfInt32 j;
NVEC2I vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];
return vResult;
}
NVEC2I fnVEC2I_sub(_In_ const NVEC2I vMinuend, _In_ const NVEC2I vSubtrahend)
{
nfInt32 j;
NVEC2I vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];
return vResult;
}
NVEC2I fnVEC2I_scale(_In_ const NVEC2I vVector, _In_ nfInt32 vFactor)
{
nfInt32 j;
NVEC2I vResult;
for (j = 0; j < 2; j++)
vResult.m_fields[j] = vVector.m_fields[j] * vFactor;
return vResult;
}
nfInt64 fnVEC2I_dotproduct(_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
{
nfInt64 v1x = vVector1.m_values.x;
nfInt64 v1y = vVector1.m_values.y;
nfInt64 v2x = vVector2.m_values.x;
nfInt64 v2y = vVector2.m_values.y;
return v1x * v2x + v1y * v2y;
}
nfFloat fnVEC2I_length(_In_ const NVEC2I vVector)
{
nfInt64 vx = vVector.m_values.x;
nfInt64 vy = vVector.m_values.y;
nfInt64 dotproduct = vx * vx + vy * vy;
return sqrtf((nfFloat)dotproduct);
}
nfFloat fnVEC2I_distance(_In_ const NVEC2I vPoint1, _In_ const NVEC2I vPoint2)
{
return fnVEC2I_length(fnVEC2I_sub(vPoint1, vPoint2));
}
NVEC3 fnVEC3_make(_In_ nfFloat fX, _In_ nfFloat fY, _In_ nfFloat fZ)
{
NVEC3 vResult;
vResult.m_values.x = fX;
vResult.m_values.y = fY;
vResult.m_values.z = fZ;
return vResult;
}
NVEC3I fnVEC3I_floor(_In_ NVEC3 vVector, _In_ nfFloat fUnits)
{
if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
throw CNMRException(NMR_ERROR_INVALIDUNITS);
NVEC3I vResult;
vResult.m_values.x = (nfInt32) floor(vVector.m_values.x / fUnits);
vResult.m_values.y = (nfInt32) floor(vVector.m_values.y / fUnits);
vResult.m_values.z = (nfInt32) floor(vVector.m_values.z / fUnits);
return vResult;
}
NVEC3I fnVEC3I_round(_In_ NVEC3 vVector, _In_ nfFloat fUnits)
{
if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
throw CNMRException(NMR_ERROR_INVALIDUNITS);
NVEC3I vResult;
vResult.m_values.x = (nfInt32)round(vVector.m_values.x / fUnits);
vResult.m_values.y = (nfInt32)round(vVector.m_values.y / fUnits);
vResult.m_values.z = (nfInt32)round(vVector.m_values.z / fUnits);
return vResult;
}
NVEC3 fnVEC3I_uncast(_In_ NVEC3I vVector, _In_ nfFloat fUnits)
{
if ((fUnits < NMR_VECTOR_MINUNITS) || (fUnits > NMR_VECTOR_MAXUNITS))
throw CNMRException(NMR_ERROR_INVALIDUNITS);
NVEC3 vResult;
vResult.m_values.x = (nfFloat)(vVector.m_values.x) * fUnits;
vResult.m_values.y = (nfFloat)(vVector.m_values.y) * fUnits;
vResult.m_values.z = (nfFloat)(vVector.m_values.z) * fUnits;
return vResult;
}
NVEC3 fnVEC3_add(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
{
nfInt32 j;
NVEC3 vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];
return vResult;
}
NVEC3 fnVEC3_sub(_In_ const NVEC3 vMinuend, _In_ const NVEC3 vSubtrahend)
{
nfInt32 j;
NVEC3 vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];
return vResult;
}
NVEC3 fnVEC3_scale(_In_ const NVEC3 vVector, _In_ nfFloat vFactor)
{
nfInt32 j;
NVEC3 vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vVector.m_fields[j] * vFactor;
return vResult;
}
NVEC3 fnVEC3_combine(_In_ const NVEC3 vVector1, _In_ nfFloat vFactor1, _In_ const NVEC3 vVector2, _In_ nfFloat vFactor2)
{
nfInt32 j;
NVEC3 vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vVector1.m_fields[j] * vFactor1 + vVector2.m_fields[j] * vFactor2;
return vResult;
}
nfFloat fnVEC3_dotproduct(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
{
return vVector1.m_values.x * vVector2.m_values.x +
vVector1.m_values.y * vVector2.m_values.y +
vVector1.m_values.z * vVector2.m_values.z;
}
NVEC3 fnVEC3_crossproduct(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
{
NVEC3 vResult;
vResult.m_values.x = vVector1.m_values.y * vVector2.m_values.z - vVector1.m_values.z * vVector2.m_values.y;
vResult.m_values.y = vVector1.m_values.z * vVector2.m_values.x - vVector1.m_values.x * vVector2.m_values.z;
vResult.m_values.z = vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;
return vResult;
}
nfFloat fnVEC3_length(_In_ const NVEC3 vVector)
{
return sqrtf(vVector.m_values.x * vVector.m_values.x + vVector.m_values.y * vVector.m_values.y + vVector.m_values.z * vVector.m_values.z);
}
nfFloat fnVEC3_distance(_In_ const NVEC3 vPoint1, _In_ const NVEC3 vPoint2)
{
return fnVEC3_length(fnVEC3_sub(vPoint1, vPoint2));
}
NVEC3 fnVEC3_normalize(_In_ const NVEC3 vVector)
{
nfFloat fLength = fnVEC3_length(vVector);
if (fLength < NMR_VECTOR_MINNORMALIZELENGTH)
throw CNMRException(NMR_ERROR_NORMALIZEDZEROVECTOR);
return fnVEC3_scale(vVector, 1.0f / fLength);
}
NVEC3 fnVEC3_calcTriangleNormal(_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2, _In_ const NVEC3 vVector3)
{
NVEC3 vVectorU = fnVEC3_sub(vVector2, vVector1);
NVEC3 vVectorV = fnVEC3_sub(vVector3, vVector1);
NVEC3 vResult = fnVEC3_crossproduct(vVectorU, vVectorV);
nfFloat fLength = fnVEC3_length(vResult);
if (fLength > NMR_VECTOR_MINNORMALIZELENGTH)
return fnVEC3_scale(vResult, 1.0f / fLength);
else
return fnVEC3_make(0.0f, 0.0f, 0.0f);
}
NVEC3I fnVEC3I_make(_In_ nfInt32 nX, _In_ nfInt32 nY, _In_ nfInt32 nZ)
{
NVEC3I vResult;
vResult.m_values.x = nX;
vResult.m_values.y = nY;
vResult.m_values.z = nZ;
return vResult;
}
NVEC3I fnVEC3I_add(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
nfInt32 j;
NVEC3I vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vVector1.m_fields[j] + vVector2.m_fields[j];
return vResult;
}
NVEC3I fnVEC3I_sub(_In_ const NVEC3I vMinuend, _In_ const NVEC3I vSubtrahend)
{
nfInt32 j;
NVEC3I vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vMinuend.m_fields[j] - vSubtrahend.m_fields[j];
return vResult;
}
NVEC3I fnVEC3I_scale(_In_ const NVEC3I vVector, _In_ nfInt32 vFactor)
{
nfInt32 j;
NVEC3I vResult;
for (j = 0; j < 3; j++)
vResult.m_fields[j] = vVector.m_fields[j] * vFactor;
return vResult;
}
nfInt64 fnVEC3I_dotproduct(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
nfInt64 v1x = vVector1.m_values.x;
nfInt64 v1y = vVector1.m_values.y;
nfInt64 v1z = vVector1.m_values.z;
nfInt64 v2x = vVector2.m_values.x;
nfInt64 v2y = vVector2.m_values.y;
nfInt64 v2z = vVector2.m_values.z;
return v1x * v2x + v1y * v2y + v1z * v2z;
}
nfFloat fnVEC3I_length(_In_ const NVEC3I vVector)
{
nfInt64 vx = vVector.m_values.x;
nfInt64 vy = vVector.m_values.y;
nfInt64 vz = vVector.m_values.z;
nfInt64 dotproduct = vx * vx + vy * vy + vz * vz;
return sqrtf((nfFloat)dotproduct);
}
nfFloat fnVEC3I_distance(_In_ const NVEC3I vPoint1, _In_ const NVEC3I vPoint2)
{
return fnVEC3I_length(fnVEC3I_sub(vPoint1, vPoint2));
}
nfInt32 fnVEC3I_comparelexicographic(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
nfInt32 nResult = fnInt32_compare(vVector1.m_fields[0], vVector2.m_fields[0]);
if (nResult == 0) {
nResult = fnInt32_compare(vVector1.m_fields[1], vVector2.m_fields[1]);
if (nResult == 0)
nResult = fnInt32_compare(vVector1.m_fields[2], vVector2.m_fields[2]);
}
return nResult;
}
nfBool fnVEC3I_iszero(_In_ const NVEC3I vVector)
{
return ((vVector.m_fields[0] == 0) && (vVector.m_fields[1] == 0) && (vVector.m_fields[2] == 0));
}
NVEC3I fnVEC3I_crossproduct(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
NVEC3I vResult;
// Attention! there may be a int32 overflow
vResult.m_values.x = vVector1.m_values.y * vVector2.m_values.z - vVector1.m_values.z * vVector2.m_values.y;
vResult.m_values.y = vVector1.m_values.z * vVector2.m_values.x - vVector1.m_values.x * vVector2.m_values.z;
vResult.m_values.z = vVector1.m_values.x * vVector2.m_values.y - vVector1.m_values.y * vVector2.m_values.x;
return vResult;
}
NVEC3I64 fnVEC3I_crossproduct64(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
NVEC3I64 vResult;
vResult.m_values.x = nfInt64(vVector1.m_values.y) * nfInt64(vVector2.m_values.z) - nfInt64(vVector1.m_values.z) * nfInt64(vVector2.m_values.y);
vResult.m_values.y = nfInt64(vVector1.m_values.z) * nfInt64(vVector2.m_values.x) - nfInt64(vVector1.m_values.x) * nfInt64(vVector2.m_values.z);
vResult.m_values.z = nfInt64(vVector1.m_values.x) * nfInt64(vVector2.m_values.y) - nfInt64(vVector1.m_values.y) * nfInt64(vVector2.m_values.x);
return vResult;
}
nfBool fnVEC3I_triangleIsDegenerate(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2, _In_ const NVEC3I vVector3)
{
NVEC3I vU = fnVEC3I_sub(vVector2, vVector1);
NVEC3I vV = fnVEC3I_sub(vVector3, vVector1);
NVEC3I64 vNormal = fnVEC3I_crossproduct64(vU, vV);
return ((vNormal.m_fields[0] == 0) && (vNormal.m_fields[1] == 0) && (vNormal.m_fields[2] == 0));
}
NVEC3I fnVEC3I_setOrderedVector(_In_ nfInt32 nValue1, _In_ nfInt32 nValue2, _In_ nfInt32 nValue3)
{
NVEC3I vResult;
if ((nValue1 <= nValue2) && (nValue1 <= nValue3)) {
vResult.m_fields[0] = nValue1;
if (nValue2 <= nValue3) {
vResult.m_fields[1] = nValue2;
vResult.m_fields[2] = nValue3;
}
else {
vResult.m_fields[1] = nValue3;
vResult.m_fields[2] = nValue2;
}
}
else if ((nValue2 <= nValue1) && (nValue2 <= nValue3)) {
vResult.m_fields[0] = nValue2;
if (nValue1 <= nValue3) {
vResult.m_fields[1] = nValue1;
vResult.m_fields[2] = nValue3;
}
else {
vResult.m_fields[1] = nValue3;
vResult.m_fields[2] = nValue1;
}
}
else {
vResult.m_fields[0] = nValue3;
if (nValue1 <= nValue2) {
vResult.m_fields[1] = nValue1;
vResult.m_fields[2] = nValue2;
}
else {
vResult.m_fields[1] = nValue2;
vResult.m_fields[2] = nValue1;
}
}
return vResult;
}
nfBool fnVEC3I_checkForCollinearity(_In_ NVEC3I vVector1, _In_ NVEC3I vVector2)
{
if (vVector1.m_fields[1] * vVector2.m_fields[2] != vVector1.m_fields[2] * vVector2.m_fields[1])
return false;
if (vVector1.m_fields[2] * vVector2.m_fields[0] != vVector1.m_fields[0] * vVector2.m_fields[2])
return false;
if (vVector1.m_fields[0] * vVector2.m_fields[1] != vVector1.m_fields[1] * vVector2.m_fields[0])
return false;
// else
return true;
}
NVEC2 operator+ (_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
{
return fnVEC2_add(vVector1, vVector2);
}
NVEC2 operator- (_In_ const NVEC2 vMinuend, _In_ const NVEC2 vSubtrahend)
{
return fnVEC2_sub(vMinuend, vSubtrahend);
}
NVEC2 operator* (_In_ const NVEC2 vVector, _In_ nfFloat vFactor)
{
return fnVEC2_scale(vVector, vFactor);
}
NVEC2 operator* (_In_ nfFloat vFactor, _In_ const NVEC2 vVector)
{
return fnVEC2_scale(vVector, vFactor);
}
nfFloat operator* (_In_ const NVEC2 vVector1, _In_ const NVEC2 vVector2)
{
return fnVEC2_dotproduct(vVector1, vVector2);
}
NVEC2I operator+ (_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
{
return fnVEC2I_add(vVector1, vVector2);
}
NVEC2I operator- (_In_ const NVEC2I vMinuend, _In_ const NVEC2I vSubtrahend)
{
return fnVEC2I_sub(vMinuend, vSubtrahend);
}
NVEC2I operator* (_In_ const NVEC2I vVector, _In_ nfInt32 vFactor)
{
return fnVEC2I_scale(vVector, vFactor);
}
NVEC2I operator* (_In_ nfInt32 vFactor, _In_ const NVEC2I vVector)
{
return fnVEC2I_scale(vVector, vFactor);
}
nfUint64 operator* (_In_ const NVEC2I vVector1, _In_ const NVEC2I vVector2)
{
return fnVEC2I_dotproduct(vVector1, vVector2);
}
NVEC3 operator+ (_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
{
return fnVEC3_add(vVector1, vVector2);
}
NVEC3 operator- (_In_ const NVEC3 vMinuend, _In_ const NVEC3 vSubtrahend)
{
return fnVEC3_sub(vMinuend, vSubtrahend);
}
NVEC3 operator* (_In_ const NVEC3 vVector, nfFloat vFactor)
{
return fnVEC3_scale(vVector, vFactor);
}
NVEC3 operator* (nfFloat vFactor, _In_ const NVEC3 vVector)
{
return fnVEC3_scale(vVector, vFactor);
}
nfFloat operator* (_In_ const NVEC3 vVector1, _In_ const NVEC3 vVector2)
{
return fnVEC3_dotproduct(vVector1, vVector2);
}
NVEC3I operator+ (_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
return fnVEC3I_add(vVector1, vVector2);
}
NVEC3I operator- (_In_ const NVEC3I vMinuend, _In_ const NVEC3I vSubtrahend)
{
return fnVEC3I_sub(vMinuend, vSubtrahend);
}
NVEC3I operator* (_In_ const NVEC3I vVector, _In_ nfInt32 vFactor)
{
return fnVEC3I_scale(vVector, vFactor);
}
NVEC3I operator* (_In_ nfInt32 vFactor, _In_ const NVEC3I vVector)
{
return fnVEC3I_scale(vVector, vFactor);
}
nfUint64 operator* (_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2)
{
return fnVEC3I_dotproduct(vVector1, vVector2);
}
nfInt32 fnInt32_sign(_In_ nfInt32 nValue)
{
return nValue < 0 ? -1 : nValue > 0 ? 1 : 0;
}
nfInt32 fnInt64_sign(_In_ nfInt64 nValue) {
return nValue < 0 ? -1 : nValue > 0 ? 1 : 0;
}
nfInt32 fnInt32_compare(_In_ nfInt32 nValue1, _In_ nfInt32 nValue2)
{
if (nValue1 > nValue2)
return 1;
else if (nValue1 < nValue2)
return -1;
else
return 0;
}
nfInt32 fnInt64_compare(_In_ nfInt64 nValue1, _In_ nfInt64 nValue2)
{
if (nValue1 > nValue2)
return 1;
else if (nValue1 < nValue2)
return -1;
else
return 0;
}
void fnOutboxInitialize(_Out_ NOUTBOX3 &oOutbox)
{
for (nfInt32 i = 0; i < 3; i++){
oOutbox.m_max.m_fields[i] = -std::numeric_limits<nfFloat>::max();
oOutbox.m_min.m_fields[i] = std::numeric_limits<nfFloat>::max();
}
}
void fnOutboxMergeVector(_Inout_ NOUTBOX3 &oOutbox, _In_ NVEC3 vVector)
{
for (nfUint32 i = 0; i < 3; i++){
oOutbox.m_min.m_fields[i] = std::min(oOutbox.m_min.m_fields[i], vVector.m_fields[i]);
oOutbox.m_max.m_fields[i] = std::max(oOutbox.m_max.m_fields[i], vVector.m_fields[i]);
}
}
void fnOutboxMergeOutbox(_Inout_ NOUTBOX3 &oOutboxDest, _In_ NOUTBOX3 &oOutboxSource)
{
fnOutboxMergeVector(oOutboxDest, oOutboxSource.m_max);
fnOutboxMergeVector(oOutboxDest, oOutboxSource.m_min);
}
nfBool fnOutboxIsValid(_In_ const NOUTBOX3 oOutbox)
{
return ((fabs(oOutbox.m_min.m_values.x) < NMR_OUTBOX_MAXCOORDINATE) &&
(fabs(oOutbox.m_min.m_values.y) < NMR_OUTBOX_MAXCOORDINATE) &&
(fabs(oOutbox.m_min.m_values.z) < NMR_OUTBOX_MAXCOORDINATE) &&
(fabs(oOutbox.m_max.m_values.x) < NMR_OUTBOX_MAXCOORDINATE) &&
(fabs(oOutbox.m_max.m_values.y) < NMR_OUTBOX_MAXCOORDINATE) &&
(fabs(oOutbox.m_max.m_values.z) < NMR_OUTBOX_MAXCOORDINATE));
}
void fnOutbox3IMergeVector(_Inout_ NOUTBOX3I &oOutbox, _In_ NVEC3I vVector)
{
for (nfUint32 i = 0; i < 3; i++) {
if (vVector.m_fields[i] < oOutbox.m_vMin.m_fields[i])
oOutbox.m_vMin.m_fields[i] = vVector.m_fields[i];
if (vVector.m_fields[i] > oOutbox.m_vMax.m_fields[i])
oOutbox.m_vMax.m_fields[i] = vVector.m_fields[i];
}
}
void fnOutbox3IMergeOutbox(_Inout_ NOUTBOX3I &oOutboxDest, _In_ NOUTBOX3I &oOutboxSource)
{
for (nfUint32 i = 0; i < 3; i++) {
if (oOutboxSource.m_vMin.m_fields[i] < oOutboxDest.m_vMin.m_fields[i])
oOutboxDest.m_vMin.m_fields[i] = oOutboxSource.m_vMin.m_fields[i];
if (oOutboxSource.m_vMax.m_fields[i] > oOutboxDest.m_vMax.m_fields[i])
oOutboxDest.m_vMax.m_fields[i] = oOutboxSource.m_vMax.m_fields[i];
}
}
NOUTBOX3I fnCalcTriangleOutbox3I(_In_ const NVEC3I vVector1, _In_ const NVEC3I vVector2, _In_ const NVEC3I vVector3)
{
NOUTBOX3I oOutbox;
oOutbox.m_vMin = vVector1;
oOutbox.m_vMax = vVector1;
fnOutbox3IMergeVector(oOutbox, vVector2);
fnOutbox3IMergeVector(oOutbox, vVector3);
return oOutbox;
}
nfBool fnOutbox3IDoIntersect(_In_ const NOUTBOX3I oOutbox1, _In_ const NOUTBOX3I oOutbox2)
{
nfBool bResult = true;
nfBool bIntervalIntersects;
for (nfUint32 i = 0; i < 3; i++) {
bIntervalIntersects = (((oOutbox1.m_vMin.m_fields[i] >= oOutbox2.m_vMin.m_fields[i]) && (oOutbox1.m_vMin.m_fields[i] <= oOutbox2.m_vMax.m_fields[i]))
|| ((oOutbox1.m_vMax.m_fields[i] >= oOutbox2.m_vMin.m_fields[i]) && (oOutbox1.m_vMax.m_fields[i] <= oOutbox2.m_vMax.m_fields[i]))
|| ((oOutbox2.m_vMin.m_fields[i] >= oOutbox1.m_vMin.m_fields[i]) && (oOutbox2.m_vMin.m_fields[i] <= oOutbox1.m_vMax.m_fields[i]))
|| ((oOutbox2.m_vMax.m_fields[i] >= oOutbox1.m_vMin.m_fields[i]) && (oOutbox2.m_vMax.m_fields[i] <= oOutbox1.m_vMax.m_fields[i])));
bResult = bResult && bIntervalIntersects;
}
return bResult;
}
}
|