1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
package Algorithm::HyperLogLog::PP;
use strict;
use warnings;
use 5.008008;
use Carp ();
use Digest::MurmurHash3::PurePerl qw(murmur32);
use constant {
HLL_HASH_SEED => 313,
TWO_32 => 4294967296.0,
NEG_TWO_32 => -4294967296.0,
};
our $VERSION = "0.24";
require Algorithm::HyperLogLog;
{
package Algorithm::HyperLogLog;
our @ISA = qw(Algorithm::HyperLogLog::PP);
}
sub new {
my ( $class, $k ) = @_;
if ( $k < 4 || $k > 16 ) {
Carp::croak "Number of ragisters must be in the range [4,16]";
}
my $m = 1 << $k;
my $registers = [ (0) x $m ];
my $alpha = 0;
if ( $m == 16 ) {
$alpha = 0.673;
}
elsif ( $m == 32 ) {
$alpha = 0.697;
}
elsif ( $m == 64 ) {
$alpha = 0.709;
}
else {
$alpha = 0.7213 / ( 1.0 + 1.079 / $m );
}
my $self = {
k => $k,
m => $m,
registers => $registers,
alphaMM => $alpha * $m * $m,
};
bless $self, $class;
return $self;
}
sub _new_from_dump {
my ( $class, $k, $data ) = @_;
my $self = $class->new($k);
$self->{registers} = $data;
return $self;
}
sub _dump_register {
my $self = shift;
return $self->{registers};
}
sub register_size {
my $self = shift;
return $self->{m};
}
sub add {
my ( $self, @data_list ) = @_;
for my $data (@data_list) {
my $hash = murmur32( $data, HLL_HASH_SEED );
my $index = ( $hash >> ( 32 - $self->{'k'} ) );
my $rank = _rho( ( $hash << $self->{k} ), 32 - $self->{k} );
if ( $rank > $self->{registers}[$index] ) {
$self->{registers}[$index] = $rank;
}
}
}
sub estimate {
my $self = shift;
my $m = $self->{m};
my $rank = 0;
my $sum = 0.0;
for my $i ( 0 .. ( $m - 1 ) ) {
$rank = $self->{registers}[$i];
$sum += 1.0 / ( 2.0**$rank );
}
my $estimate = $self->{alphaMM} * ( 1.0 / $sum ); # E in the original paper
if ( $estimate <= 2.5 * $m ) {
my $v = 0;
for my $i ( 0 .. ( $m - 1 ) ) {
if ( $self->{registers}[$i] == 0 ) {
$v++;
}
}
if ( $v != 0 ) {
$estimate = $m * log( $m / $v );
}
}
elsif ( $estimate > ( 1.0 / 30.0 ) * TWO_32 ) {
$estimate = NEG_TWO_32 * log( 1.0 - ( $estimate / TWO_32 ) );
}
return $estimate;
}
sub merge {
my ($self, $other) = @_;
my $m = $self->{m};
die "hll size misatch" if $self->{m} != $other->{m};
for (my $i=0; $i<$m; $i++) {
if ($self->{registers}[$i] < $other->{registers}[$i]) {
$self->{registers}[$i] = $other->{registers}[$i];
}
}
}
sub XS {
0;
}
sub _rho {
my ( $x, $b ) = @_;
my $v = 1;
while ( $v <= $b && !( $x & 0x80000000 ) ) {
$v++;
$x <<= 1;
}
return $v;
}
1;
__END__
|