1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
|
/*
* Limited memory BFGS (L-BFGS).
*
* Copyright (c) 1990, Jorge Nocedal
* Copyright (c) 2007, Naoaki Okazaki
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* $Id: lbfgs.c 56 2007-12-16 08:01:47Z naoaki $ */
/*
This library is a C port of the FORTRAN implementation of Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
The original FORTRAN source code is available at:
http://www.ece.northwestern.edu/~nocedal/lbfgs.html
The L-BFGS algorithm is described in:
- Jorge Nocedal.
Updating Quasi-Newton Matrices with Limited Storage.
<i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
- Dong C. Liu and Jorge Nocedal.
On the limited memory BFGS method for large scale optimization.
<i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.
The line search algorithms used in this implementation are described in:
- John E. Dennis and Robert B. Schnabel.
<i>Numerical Methods for Unconstrained Optimization and Nonlinear
Equations</i>, Englewood Cliffs, 1983.
- Jorge J. More and David J. Thuente.
Line search algorithm with guaranteed sufficient decrease.
<i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
pp. 286-307, 1994.
This library also implements Orthant-Wise Limited-memory Quasi-Newton (OW-LQN)
method presented in:
- Galen Andrew and Jianfeng Gao.
Scalable training of L1-regularized log-linear models.
In <i>Proceedings of the 24th International Conference on Machine
Learning (ICML 2007)</i>, pp. 33-40, 2007.
I would like to thank the original author, Jorge Nocedal, who has been
distributing the effieicnt and explanatory implementation in an open source
licence.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif/*HAVE_CONFIG_H*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <lbfgs.h>
#ifdef _MSC_VER
#define inline __inline
typedef unsigned int uint32_t;
#endif/*_MSC_VER*/
/* this block is added by laye */
#ifndef _MSC_VER
#include <stdint.h>
#endif/*_MSC_VER*/
#if defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 32
/* Use SSE optimization for 32bit float precision. */
#include "arithmetic_sse_float.h"
#elif defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 64
/* Use SSE2 optimization for 64bit double precision. */
#include "arithmetic_sse_double.h"
#else
/* No CPU specific optimization. */
#include "arithmetic_ansi.h"
#endif
#define min2(a, b) ((a) <= (b) ? (a) : (b))
#define max2(a, b) ((a) >= (b) ? (a) : (b))
#define max3(a, b, c) max2(max2((a), (b)), (c));
struct tag_iteration_data {
lbfgsfloatval_t alpha;
lbfgsfloatval_t *s; /* [n] */
lbfgsfloatval_t *y; /* [n] */
lbfgsfloatval_t ys; /* vecdot(y, s) */
};
typedef struct tag_iteration_data iteration_data_t;
static const lbfgs_parameter_t _defparam = {
6, 1e-5, 0, 20,
1e-20, 1e20, 1e-4, 0.9, 1.0e-16,
0.0,
};
/* Forward function declarations. */
static int line_search_backtracking(
int n,
lbfgsfloatval_t *x,
lbfgsfloatval_t *f,
lbfgsfloatval_t *g,
lbfgsfloatval_t *s,
lbfgsfloatval_t *stp,
lbfgsfloatval_t *wa,
lbfgs_evaluate_t proc_evaluate,
void *instance,
const lbfgs_parameter_t *param
);
static int line_search(
int n,
lbfgsfloatval_t *x,
lbfgsfloatval_t *f,
lbfgsfloatval_t *g,
lbfgsfloatval_t *s,
lbfgsfloatval_t *stp,
lbfgsfloatval_t *wa,
lbfgs_evaluate_t proc_evaluate,
void *instance,
const lbfgs_parameter_t *param
);
static int update_trial_interval(
lbfgsfloatval_t *x,
lbfgsfloatval_t *fx,
lbfgsfloatval_t *dx,
lbfgsfloatval_t *y,
lbfgsfloatval_t *fy,
lbfgsfloatval_t *dy,
lbfgsfloatval_t *t,
lbfgsfloatval_t *ft,
lbfgsfloatval_t *dt,
const lbfgsfloatval_t tmin,
const lbfgsfloatval_t tmax,
int *brackt
);
void lbfgs_parameter_init(lbfgs_parameter_t *param)
{
memcpy(param, &_defparam, sizeof(*param));
}
int lbfgs(
const int n,
lbfgsfloatval_t *x,
lbfgsfloatval_t *ptr_fx,
lbfgs_evaluate_t proc_evaluate,
lbfgs_progress_t proc_progress,
void *instance,
lbfgs_parameter_t *_param
)
{
int ret;
int i, j, k, ls, end, bound;
lbfgsfloatval_t step;
/* Constant parameters and their default values. */
const lbfgs_parameter_t* param = (_param != NULL) ? _param : &_defparam;
const int m = param->m;
lbfgsfloatval_t *xp = NULL, *g = NULL, *gp = NULL, *d = NULL, *w = NULL;
iteration_data_t *lm = NULL, *it = NULL;
lbfgsfloatval_t ys, yy;
lbfgsfloatval_t norm, xnorm, gnorm, beta;
lbfgsfloatval_t fx = 0.;
/* Check the input parameters for errors. */
if (n <= 0) {
return LBFGSERR_INVALID_N;
}
#if defined(USE_SSE) && defined(__SSE__)
if (n % 8 != 0) {
return LBFGSERR_INVALID_N_SSE;
}
#endif/*defined(__SSE__)*/
if (param->min_step < 0.) {
return LBFGSERR_INVALID_MINSTEP;
}
if (param->max_step < param->min_step) {
return LBFGSERR_INVALID_MAXSTEP;
}
if (param->ftol < 0.) {
return LBFGSERR_INVALID_FTOL;
}
if (param->gtol < 0.) {
return LBFGSERR_INVALID_GTOL;
}
if (param->xtol < 0.) {
return LBFGSERR_INVALID_XTOL;
}
if (param->max_linesearch <= 0) {
return LBFGSERR_INVALID_MAXLINESEARCH;
}
if (param->orthantwise_c < 0.) {
return LBFGSERR_INVALID_ORTHANTWISE;
}
/* Allocate working space. */
xp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
g = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
gp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
d = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
w = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
if (xp == NULL || g == NULL || gp == NULL || d == NULL || w == NULL) {
ret = LBFGSERR_OUTOFMEMORY;
goto lbfgs_exit;
}
/* Allocate limited memory storage. */
lm = (iteration_data_t*)vecalloc(m * sizeof(iteration_data_t));
if (lm == NULL) {
ret = LBFGSERR_OUTOFMEMORY;
goto lbfgs_exit;
}
/* Initialize the limited memory. */
for (i = 0;i < m;++i) {
it = &lm[i];
it->alpha = 0;
it->ys = 0;
it->s = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
it->y = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
if (it->s == NULL || it->y == NULL) {
ret = LBFGSERR_OUTOFMEMORY;
goto lbfgs_exit;
}
}
/* Evaluate the function value and its gradient. */
fx = proc_evaluate(instance, x, g, n, 0);
if (0. < param->orthantwise_c) {
/* Compute L1-regularization factor and add it to the object value. */
norm = 0.;
for (i = 0;i < n;++i) {
norm += fabs(x[i]);
}
fx += norm * param->orthantwise_c;
}
/* We assume the initial hessian matrix H_0 as the identity matrix. */
if (param->orthantwise_c == 0.) {
vecncpy(d, g, n);
} else {
/* Compute the negative of psuedo-gradients. */
for (i = 0;i < n;++i) {
if (x[i] < 0.) {
/* Differentiable. */
d[i] = -g[i] + param->orthantwise_c;
} else if (0. < x[i]) {
/* Differentiable. */
d[i] = -g[i] - param->orthantwise_c;
} else {
if (g[i] < -param->orthantwise_c) {
/* Take the right partial derivative. */
d[i] = -g[i] - param->orthantwise_c;
} else if (param->orthantwise_c < g[i]) {
/* Take the left partial derivative. */
d[i] = -g[i] + param->orthantwise_c;
} else {
d[i] = 0.;
}
}
}
}
/* Compute the initial step:
step = 1.0 / sqrt(vecdot(d, d, n))
*/
vecrnorm(&step, d, n);
k = 1;
end = 0;
for (;;) {
/* Store the current position and gradient vectors. */
veccpy(xp, x, n);
veccpy(gp, g, n);
/* Search for an optimal step. */
ls = line_search(
n, x, &fx, g, d, &step, w, proc_evaluate, instance, param);
if (ls < 0) {
ret = ls;
goto lbfgs_exit;
}
/* Compute x and g norms. */
vecnorm(&gnorm, g, n);
vecnorm(&xnorm, x, n);
/* Report the progress. */
if (proc_progress) {
if (ret = proc_progress(instance, x, g, fx, xnorm, gnorm, step, n, k, ls)) {
goto lbfgs_exit;
}
}
/*
Convergence test.
The criterion is given by the following formula:
|g(x)| / \max(1, |x|) < \epsilon
*/
if (xnorm < 1.0) xnorm = 1.0;
if (gnorm / xnorm <= param->epsilon) {
/* Convergence. */
ret = 0;
break;
}
if (param->max_iterations != 0 && param->max_iterations < k+1) {
/* Maximum number of iterations. */
ret = LBFGSERR_MAXIMUMITERATION;
break;
}
/*
Update vectors s and y:
s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
y_{k+1} = g_{k+1} - g_{k}.
*/
it = &lm[end];
vecdiff(it->s, x, xp, n);
vecdiff(it->y, g, gp, n);
/*
Compute scalars ys and yy:
ys = y^t \cdot s = 1 / \rho.
yy = y^t \cdot y.
Notice that yy is used for scaling the hessian matrix H_0 (Cholesky factor).
*/
vecdot(&ys, it->y, it->s, n);
vecdot(&yy, it->y, it->y, n);
it->ys = ys;
/*
Recursive formula to compute dir = -(H \cdot g).
This is described in page 779 of:
Jorge Nocedal.
Updating Quasi-Newton Matrices with Limited Storage.
Mathematics of Computation, Vol. 35, No. 151,
pp. 773--782, 1980.
*/
bound = (m <= k) ? m : k;
++k;
end = (end + 1) % m;
if (param->orthantwise_c == 0.) {
/* Compute the negative of gradients. */
vecncpy(d, g, n);
} else {
/* Compute the negative of psuedo-gradients. */
for (i = 0;i < n;++i) {
if (x[i] < 0.) {
/* Differentiable. */
d[i] = -g[i] + param->orthantwise_c;
} else if (0. < x[i]) {
/* Differentiable. */
d[i] = -g[i] - param->orthantwise_c;
} else {
if (g[i] < -param->orthantwise_c) {
/* Take the right partial derivative. */
d[i] = -g[i] - param->orthantwise_c;
} else if (param->orthantwise_c < g[i]) {
/* Take the left partial derivative. */
d[i] = -g[i] + param->orthantwise_c;
} else {
d[i] = 0.;
}
}
}
/* Store the steepest direction.*/
veccpy(w, d, n);
}
j = end;
for (i = 0;i < bound;++i) {
j = (j + m - 1) % m; /* if (--j == -1) j = m-1; */
it = &lm[j];
/* \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}. */
vecdot(&it->alpha, it->s, d, n);
it->alpha /= it->ys;
/* q_{i} = q_{i+1} - \alpha_{i} y_{i}. */
vecadd(d, it->y, -it->alpha, n);
}
vecscale(d, ys / yy, n);
for (i = 0;i < bound;++i) {
it = &lm[j];
/* \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}. */
vecdot(&beta, it->y, d, n);
beta /= it->ys;
/* \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}. */
vecadd(d, it->s, it->alpha - beta, n);
j = (j + 1) % m; /* if (++j == m) j = 0; */
}
/*
Constrain the search direction for orthant-wise updates.
*/
if (param->orthantwise_c != 0.) {
for (i = 0;i < n;++i) {
if (d[i] * w[i] <= 0) {
d[i] = 0;
}
}
}
/*
Now the search direction d is ready. We try step = 1 first.
*/
step = 1.0;
}
lbfgs_exit:
/* Return the final value of the objective function. */
if (ptr_fx != NULL) {
*ptr_fx = fx;
}
/* Free memory blocks used by this function. */
if (lm != NULL) {
for (i = 0;i < m;++i) {
vecfree(lm[i].s);
vecfree(lm[i].y);
}
vecfree(lm);
}
vecfree(w);
vecfree(d);
vecfree(gp);
vecfree(g);
vecfree(xp);
return ret;
}
static int line_search_backtracking(
int n,
lbfgsfloatval_t *x,
lbfgsfloatval_t *f,
lbfgsfloatval_t *g,
lbfgsfloatval_t *s,
lbfgsfloatval_t *stp,
lbfgsfloatval_t *xp,
lbfgs_evaluate_t proc_evaluate,
void *instance,
const lbfgs_parameter_t *param
)
{
int i, ret = 0, count = 0;
lbfgsfloatval_t width = 0.5, norm = 0.;
lbfgsfloatval_t finit, dginit = 0., dg, dgtest;
/* Check the input parameters for errors. */
if (*stp <= 0.) {
return LBFGSERR_INVALIDPARAMETERS;
}
/* Compute the initial gradient in the search direction. */
if (param->orthantwise_c != 0.) {
/* Use psuedo-gradients for orthant-wise updates. */
for (i = 0;i < n;++i) {
/* Notice that:
(-s[i] < 0) <==> (g[i] < -param->orthantwise_c)
(-s[i] > 0) <==> (param->orthantwise_c < g[i])
as the result of the lbfgs() function for orthant-wise updates.
*/
if (s[i] != 0.) {
if (x[i] < 0.) {
/* Differentiable. */
dginit += s[i] * (g[i] - param->orthantwise_c);
} else if (0. < x[i]) {
/* Differentiable. */
dginit += s[i] * (g[i] + param->orthantwise_c);
} else if (s[i] < 0.) {
/* Take the left partial derivative. */
dginit += s[i] * (g[i] - param->orthantwise_c);
} else if (0. < s[i]) {
/* Take the right partial derivative. */
dginit += s[i] * (g[i] + param->orthantwise_c);
}
}
}
} else {
vecdot(&dginit, g, s, n);
}
/* Make sure that s points to a descent direction. */
if (0 < dginit) {
return LBFGSERR_INCREASEGRADIENT;
}
/* The initial value of the objective function. */
finit = *f;
dgtest = param->ftol * dginit;
/* Copy the value of x to the work area. */
veccpy(xp, x, n);
for (;;) {
veccpy(x, xp, n);
vecadd(x, s, *stp, n);
if (param->orthantwise_c != 0.) {
/* The current point is projected onto the orthant of the initial one. */
for (i = 0;i < n;++i) {
if (x[i] * xp[i] < 0.) {
x[i] = 0.;
}
}
}
/* Evaluate the function and gradient values. */
*f = proc_evaluate(instance, x, g, n, *stp);
if (0. < param->orthantwise_c) {
/* Compute L1-regularization factor and add it to the object value. */
norm = 0.;
for (i = 0;i < n;++i) {
norm += fabs(x[i]);
}
*f += norm * param->orthantwise_c;
}
vecdot(&dg, g, s, n);
++count;
if (*f <= finit + *stp * dgtest) {
/* The sufficient decrease condition. */
return count;
}
if (*stp < param->min_step) {
/* The step is the minimum value. */
ret = LBFGSERR_MINIMUMSTEP;
break;
}
if (param->max_linesearch <= count) {
/* Maximum number of iteration. */
ret = LBFGSERR_MAXIMUMLINESEARCH;
break;
}
(*stp) *= width;
}
/* Revert to the previous position. */
veccpy(x, xp, n);
return ret;
}
static int line_search(
int n,
lbfgsfloatval_t *x,
lbfgsfloatval_t *f,
lbfgsfloatval_t *g,
lbfgsfloatval_t *s,
lbfgsfloatval_t *stp,
lbfgsfloatval_t *wa,
lbfgs_evaluate_t proc_evaluate,
void *instance,
const lbfgs_parameter_t *param
)
{
int i, count = 0;
int brackt, stage1, uinfo = 0;
lbfgsfloatval_t dg, norm;
lbfgsfloatval_t stx, fx, dgx;
lbfgsfloatval_t sty, fy, dgy;
lbfgsfloatval_t fxm, dgxm, fym, dgym, fm, dgm;
lbfgsfloatval_t finit, ftest1, dginit, dgtest;
lbfgsfloatval_t width, prev_width;
lbfgsfloatval_t stmin, stmax;
/* Check the input parameters for errors. */
if (*stp <= 0.) {
return LBFGSERR_INVALIDPARAMETERS;
}
/* Compute the initial gradient in the search direction. */
if (param->orthantwise_c != 0.) {
/* Use psuedo-gradients for orthant-wise updates. */
dginit = 0.;
for (i = 0;i < n;++i) {
/* Notice that:
(-s[i] < 0) <==> (g[i] < -param->orthantwise_c)
(-s[i] > 0) <==> (param->orthantwise_c < g[i])
as the result of the lbfgs() function for orthant-wise updates.
*/
if (s[i] != 0.) {
if (x[i] < 0.) {
/* Differentiable. */
dginit += s[i] * (g[i] - param->orthantwise_c);
} else if (0. < x[i]) {
/* Differentiable. */
dginit += s[i] * (g[i] + param->orthantwise_c);
} else if (s[i] < 0.) {
/* Take the left partial derivative. */
dginit += s[i] * (g[i] - param->orthantwise_c);
} else if (0. < s[i]) {
/* Take the right partial derivative. */
dginit += s[i] * (g[i] + param->orthantwise_c);
}
}
}
} else {
vecdot(&dginit, g, s, n);
}
/* Make sure that s points to a descent direction. */
if (0 < dginit) {
return LBFGSERR_INCREASEGRADIENT;
}
/* Initialize local variables. */
brackt = 0;
stage1 = 1;
finit = *f;
dgtest = param->ftol * dginit;
width = param->max_step - param->min_step;
prev_width = 2.0 * width;
/* Copy the value of x to the work area. */
veccpy(wa, x, n);
/*
The variables stx, fx, dgx contain the values of the step,
function, and directional derivative at the best step.
The variables sty, fy, dgy contain the value of the step,
function, and derivative at the other endpoint of
the interval of uncertainty.
The variables stp, f, dg contain the values of the step,
function, and derivative at the current step.
*/
stx = sty = 0.;
fx = fy = finit;
dgx = dgy = dginit;
for (;;) {
/*
Set the minimum and maximum steps to correspond to the
present interval of uncertainty.
*/
if (brackt) {
stmin = min2(stx, sty);
stmax = max2(stx, sty);
} else {
stmin = stx;
stmax = *stp + 4.0 * (*stp - stx);
}
/* Clip the step in the range of [stpmin, stpmax]. */
if (*stp < param->min_step) *stp = param->min_step;
if (param->max_step < *stp) *stp = param->max_step;
/*
If an unusual termination is to occur then let
stp be the lowest point obtained so far.
*/
if ((brackt && ((*stp <= stmin || stmax <= *stp) || param->max_linesearch <= count + 1 || uinfo != 0)) || (brackt && (stmax - stmin <= param->xtol * stmax))) {
*stp = stx;
}
/*
Compute the current value of x:
x <- x + (*stp) * s.
*/
veccpy(x, wa, n);
vecadd(x, s, *stp, n);
if (param->orthantwise_c != 0.) {
/* The current point is projected onto the orthant of the previous one. */
for (i = 0;i < n;++i) {
if (x[i] * wa[i] < 0.) {
x[i] = 0.;
}
}
}
/* Evaluate the function and gradient values. */
*f = proc_evaluate(instance, x, g, n, *stp);
if (0. < param->orthantwise_c) {
/* Compute L1-regularization factor and add it to the object value. */
norm = 0.;
for (i = 0;i < n;++i) {
norm += fabs(x[i]);
}
*f += norm * param->orthantwise_c;
}
++count;
vecdot(&dg, g, s, n);
ftest1 = finit + *stp * dgtest;
/* Test for errors and convergence. */
if (brackt && ((*stp <= stmin || stmax <= *stp) || uinfo != 0)) {
/* Rounding errors prevent further progress. */
return LBFGSERR_ROUNDING_ERROR;
}
if (*stp == param->max_step && *f <= ftest1 && dg <= dgtest) {
/* The step is the maximum value. */
return LBFGSERR_MAXIMUMSTEP;
}
if (*stp == param->min_step && (ftest1 < *f || dgtest <= dg)) {
/* The step is the minimum value. */
return LBFGSERR_MINIMUMSTEP;
}
if (brackt && (stmax - stmin) <= param->xtol * stmax) {
/* Relative width of the interval of uncertainty is at most xtol. */
return LBFGSERR_WIDTHTOOSMALL;
}
if (param->max_linesearch <= count) {
/* Maximum number of iteration. */
return LBFGSERR_MAXIMUMLINESEARCH;
}
if (*f <= ftest1 && fabs(dg) <= param->gtol * (-dginit)) {
/* The sufficient decrease condition and the directional derivative condition hold. */
return count;
}
/*
In the first stage we seek a step for which the modified
function has a nonpositive value and nonnegative derivative.
*/
if (stage1 && *f <= ftest1 && min2(param->ftol, param->gtol) * dginit <= dg) {
stage1 = 0;
}
/*
A modified function is used to predict the step only if
we have not obtained a step for which the modified
function has a nonpositive function value and nonnegative
derivative, and if a lower function value has been
obtained but the decrease is not sufficient.
*/
if (stage1 && ftest1 < *f && *f <= fx) {
/* Define the modified function and derivative values. */
fm = *f - *stp * dgtest;
fxm = fx - stx * dgtest;
fym = fy - sty * dgtest;
dgm = dg - dgtest;
dgxm = dgx - dgtest;
dgym = dgy - dgtest;
/*
Call update_trial_interval() to update the interval of
uncertainty and to compute the new step.
*/
uinfo = update_trial_interval(
&stx, &fxm, &dgxm,
&sty, &fym, &dgym,
stp, &fm, &dgm,
stmin, stmax, &brackt
);
/* Reset the function and gradient values for f. */
fx = fxm + stx * dgtest;
fy = fym + sty * dgtest;
dgx = dgxm + dgtest;
dgy = dgym + dgtest;
} else {
/*
Call update_trial_interval() to update the interval of
uncertainty and to compute the new step.
*/
uinfo = update_trial_interval(
&stx, &fx, &dgx,
&sty, &fy, &dgy,
stp, f, &dg,
stmin, stmax, &brackt
);
}
/*
Force a sufficient decrease in the interval of uncertainty.
*/
if (brackt) {
if (0.66 * prev_width <= fabs(sty - stx)) {
*stp = stx + 0.5 * (sty - stx);
}
prev_width = width;
width = fabs(sty - stx);
}
}
return LBFGSERR_LOGICERROR;
}
/**
* Define the local variables for computing minimizers.
*/
#define USES_MINIMIZER \
lbfgsfloatval_t a, d, gamma, theta, p, q, r, s;
/**
* Find a minimizer of an interpolated cubic function.
* @param cm The minimizer of the interpolated cubic.
* @param u The value of one point, u.
* @param fu The value of f(u).
* @param du The value of f'(u).
* @param v The value of another point, v.
* @param fv The value of f(v).
* @param du The value of f'(v).
*/
#define CUBIC_MINIMIZER(cm, u, fu, du, v, fv, dv) \
d = (v) - (u); \
theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
p = fabs(theta); \
q = fabs(du); \
r = fabs(dv); \
s = max3(p, q, r); \
/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
a = theta / s; \
gamma = s * sqrt(a * a - ((du) / s) * ((dv) / s)); \
if ((v) < (u)) gamma = -gamma; \
p = gamma - (du) + theta; \
q = gamma - (du) + gamma + (dv); \
r = p / q; \
(cm) = (u) + r * d;
/**
* Find a minimizer of an interpolated cubic function.
* @param cm The minimizer of the interpolated cubic.
* @param u The value of one point, u.
* @param fu The value of f(u).
* @param du The value of f'(u).
* @param v The value of another point, v.
* @param fv The value of f(v).
* @param du The value of f'(v).
* @param xmin The maximum value.
* @param xmin The minimum value.
*/
#define CUBIC_MINIMIZER2(cm, u, fu, du, v, fv, dv, xmin, xmax) \
d = (v) - (u); \
theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
p = fabs(theta); \
q = fabs(du); \
r = fabs(dv); \
s = max3(p, q, r); \
/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
a = theta / s; \
gamma = s * sqrt(max2(0, a * a - ((du) / s) * ((dv) / s))); \
if ((u) < (v)) gamma = -gamma; \
p = gamma - (dv) + theta; \
q = gamma - (dv) + gamma + (du); \
r = p / q; \
if (r < 0. && gamma != 0.) { \
(cm) = (v) - r * d; \
} else if (a < 0) { \
(cm) = (xmax); \
} else { \
(cm) = (xmin); \
}
/**
* Find a minimizer of an interpolated quadratic function.
* @param qm The minimizer of the interpolated quadratic.
* @param u The value of one point, u.
* @param fu The value of f(u).
* @param du The value of f'(u).
* @param v The value of another point, v.
* @param fv The value of f(v).
*/
#define QUARD_MINIMIZER(qm, u, fu, du, v, fv) \
a = (v) - (u); \
(qm) = (u) + (du) / (((fu) - (fv)) / a + (du)) / 2 * a;
/**
* Find a minimizer of an interpolated quadratic function.
* @param qm The minimizer of the interpolated quadratic.
* @param u The value of one point, u.
* @param du The value of f'(u).
* @param v The value of another point, v.
* @param dv The value of f'(v).
*/
#define QUARD_MINIMIZER2(qm, u, du, v, dv) \
a = (u) - (v); \
(qm) = (v) + (dv) / ((dv) - (du)) * a;
/**
* Update a safeguarded trial value and interval for line search.
*
* The parameter x represents the step with the least function value.
* The parameter t represents the current step. This function assumes
* that the derivative at the point of x in the direction of the step.
* If the bracket is set to true, the minimizer has been bracketed in
* an interval of uncertainty with endpoints between x and y.
*
* @param x The pointer to the value of one endpoint.
* @param fx The pointer to the value of f(x).
* @param dx The pointer to the value of f'(x).
* @param y The pointer to the value of another endpoint.
* @param fy The pointer to the value of f(y).
* @param dy The pointer to the value of f'(y).
* @param t The pointer to the value of the trial value, t.
* @param ft The pointer to the value of f(t).
* @param dt The pointer to the value of f'(t).
* @param tmin The minimum value for the trial value, t.
* @param tmax The maximum value for the trial value, t.
* @param brackt The pointer to the predicate if the trial value is
* bracketed.
* @retval int Status value. Zero indicates a normal termination.
*
* @see
* Jorge J. More and David J. Thuente. Line search algorithm with
* guaranteed sufficient decrease. ACM Transactions on Mathematical
* Software (TOMS), Vol 20, No 3, pp. 286-307, 1994.
*/
static int update_trial_interval(
lbfgsfloatval_t *x,
lbfgsfloatval_t *fx,
lbfgsfloatval_t *dx,
lbfgsfloatval_t *y,
lbfgsfloatval_t *fy,
lbfgsfloatval_t *dy,
lbfgsfloatval_t *t,
lbfgsfloatval_t *ft,
lbfgsfloatval_t *dt,
const lbfgsfloatval_t tmin,
const lbfgsfloatval_t tmax,
int *brackt
)
{
int bound;
int dsign = fsigndiff(dt, dx);
lbfgsfloatval_t mc; /* minimizer of an interpolated cubic. */
lbfgsfloatval_t mq; /* minimizer of an interpolated quadratic. */
lbfgsfloatval_t newt; /* new trial value. */
USES_MINIMIZER; /* for CUBIC_MINIMIZER and QUARD_MINIMIZER. */
/* Check the input parameters for errors. */
if (*brackt) {
if (*t <= min2(*x, *y) || max2(*x, *y) <= *t) {
/* The trival value t is out of the interval. */
return LBFGSERR_OUTOFINTERVAL;
}
if (0. <= *dx * (*t - *x)) {
/* The function must decrease from x. */
return LBFGSERR_INCREASEGRADIENT;
}
if (tmax < tmin) {
/* Incorrect tmin and tmax specified. */
return LBFGSERR_INCORRECT_TMINMAX;
}
}
/*
Trial value selection.
*/
if (*fx < *ft) {
/*
Case 1: a higher function value.
The minimum is brackt. If the cubic minimizer is closer
to x than the quadratic one, the cubic one is taken, else
the average of the minimizers is taken.
*/
*brackt = 1;
bound = 1;
CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
QUARD_MINIMIZER(mq, *x, *fx, *dx, *t, *ft);
if (fabs(mc - *x) < fabs(mq - *x)) {
newt = mc;
} else {
newt = mc + 0.5 * (mq - mc);
}
} else if (dsign) {
/*
Case 2: a lower function value and derivatives of
opposite sign. The minimum is brackt. If the cubic
minimizer is closer to x than the quadratic (secant) one,
the cubic one is taken, else the quadratic one is taken.
*/
*brackt = 1;
bound = 0;
CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
if (fabs(mc - *t) > fabs(mq - *t)) {
newt = mc;
} else {
newt = mq;
}
} else if (fabs(*dt) < fabs(*dx)) {
/*
Case 3: a lower function value, derivatives of the
same sign, and the magnitude of the derivative decreases.
The cubic minimizer is only used if the cubic tends to
infinity in the direction of the minimizer or if the minimum
of the cubic is beyond t. Otherwise the cubic minimizer is
defined to be either tmin or tmax. The quadratic (secant)
minimizer is also computed and if the minimum is brackt
then the the minimizer closest to x is taken, else the one
farthest away is taken.
*/
bound = 1;
CUBIC_MINIMIZER2(mc, *x, *fx, *dx, *t, *ft, *dt, tmin, tmax);
QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
if (*brackt) {
if (fabs(*t - mc) < fabs(*t - mq)) {
newt = mc;
} else {
newt = mq;
}
} else {
if (fabs(*t - mc) > fabs(*t - mq)) {
newt = mc;
} else {
newt = mq;
}
}
} else {
/*
Case 4: a lower function value, derivatives of the
same sign, and the magnitude of the derivative does
not decrease. If the minimum is not brackt, the step
is either tmin or tmax, else the cubic minimizer is taken.
*/
bound = 0;
if (*brackt) {
CUBIC_MINIMIZER(newt, *t, *ft, *dt, *y, *fy, *dy);
} else if (*x < *t) {
newt = tmax;
} else {
newt = tmin;
}
}
/*
Update the interval of uncertainty. This update does not
depend on the new step or the case analysis above.
- Case a: if f(x) < f(t),
x <- x, y <- t.
- Case b: if f(t) <= f(x) && f'(t)*f'(x) > 0,
x <- t, y <- y.
- Case c: if f(t) <= f(x) && f'(t)*f'(x) < 0,
x <- t, y <- x.
*/
if (*fx < *ft) {
/* Case a */
*y = *t;
*fy = *ft;
*dy = *dt;
} else {
/* Case c */
if (dsign) {
*y = *x;
*fy = *fx;
*dy = *dx;
}
/* Cases b and c */
*x = *t;
*fx = *ft;
*dx = *dt;
}
/* Clip the new trial value in [tmin, tmax]. */
if (tmax < newt) newt = tmax;
if (newt < tmin) newt = tmin;
/*
Redefine the new trial value if it is close to the upper bound
of the interval.
*/
if (*brackt && bound) {
mq = *x + 0.66 * (*y - *x);
if (*x < *y) {
if (mq < newt) newt = mq;
} else {
if (newt < mq) newt = mq;
}
}
/* Return the new trial value. */
*t = newt;
return 0;
}
|