File: 0003-using-lbfgs-backend-from-the-liblfgs-package-so-do-n.patch

package info (click to toggle)
libalgorithm-lbfgs-perl 0.16-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 580 kB
  • sloc: perl: 2,765; makefile: 2
file content (2412 lines) | stat: -rw-r--r-- 73,007 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
From: Dima Kogan <dima@secretsauce.net>
Date: Sat, 17 Nov 2012 12:25:43 -0800
Subject: using lbfgs backend from the liblfgs package, so do not need it here
Forwarded: not-needed

---
 MANIFEST                |    5 -
 Makefile.PL             |    2 +-
 arithmetic_ansi.h       |  133 ------
 arithmetic_sse_double.h |  279 ------------
 arithmetic_sse_float.h  |  289 -------------
 lbfgs.c                 | 1105 -----------------------------------------------
 lbfgs.h                 |  508 ----------------------
 t/01-parameter.t        |    2 +-
 8 files changed, 2 insertions(+), 2321 deletions(-)
 delete mode 100644 arithmetic_ansi.h
 delete mode 100644 arithmetic_sse_double.h
 delete mode 100644 arithmetic_sse_float.h
 delete mode 100644 lbfgs.c
 delete mode 100644 lbfgs.h

diff --git a/MANIFEST b/MANIFEST
index 046bbed..bf91503 100644
--- a/MANIFEST
+++ b/MANIFEST
@@ -1,7 +1,4 @@
 Algorithm-LBFGS.xs
-arithmetic_ansi.h
-arithmetic_sse_double.h
-arithmetic_sse_float.h
 Changes
 inc/Module/AutoInstall.pm
 inc/Module/Install.pm
@@ -15,8 +12,6 @@ inc/Test/Builder.pm
 inc/Test/Builder/Module.pm
 inc/Test/More.pm
 inc/Test/Number/Delta.pm
-lbfgs.c
-lbfgs.h
 lib/Algorithm/LBFGS.pm
 LICENSE
 Makefile.PL
diff --git a/Makefile.PL b/Makefile.PL
index 1763c0b..c53bd7e 100644
--- a/Makefile.PL
+++ b/Makefile.PL
@@ -15,7 +15,7 @@ include         'Test::Number::Delta';
 auto_install;
 
 WriteMakefile(
-    LIBS              => ['-lm'],
+    LIBS              => ['-llbfgs'],
     INC               => '-I.',
     OBJECT            => '$(O_FILES)'
 );
diff --git a/arithmetic_ansi.h b/arithmetic_ansi.h
deleted file mode 100644
index 1458ce9..0000000
--- a/arithmetic_ansi.h
+++ /dev/null
@@ -1,133 +0,0 @@
-/*
- *      ANSI C implementation of vector operations.
- *
- * Copyright (c) 2007, Naoaki Okazaki
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
-/* $Id: arithmetic_ansi.h 14 2007-10-25 02:04:09Z naoaki $ */
-
-#include <stdlib.h>
-#include <memory.h>
-
-#if		LBFGS_FLOAT == 32 && LBFGS_IEEE_FLOAT
-#define	fsigndiff(x, y)	(((*(uint32_t*)(x)) ^ (*(uint32_t*)(y))) & 0x80000000U)
-#else
-#define	fsigndiff(x, y) (*(x) * (*(y) / fabs(*(y))) < 0.)
-#endif/*LBFGS_IEEE_FLOAT*/
-
-inline static void* vecalloc(size_t size)
-{
-	void *memblock = malloc(size);
-	if (memblock) {
-		memset(memblock, 0, size);
-	}
-	return memblock;
-}
-
-inline static void vecfree(void *memblock)
-{
-	free(memblock);
-}
-
-inline static void vecset(lbfgsfloatval_t *x, const lbfgsfloatval_t c, const int n)
-{
-	int i;
-	
-	for (i = 0;i < n;++i) {
-		x[i] = c;
-	}
-}
-
-inline static void veccpy(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		y[i] = x[i];
-	}
-}
-
-inline static void vecncpy(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		y[i] = -x[i];
-	}
-}
-
-inline static void vecadd(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const lbfgsfloatval_t c, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		y[i] += c * x[i];
-	}
-}
-
-inline static void vecdiff(lbfgsfloatval_t *z, const lbfgsfloatval_t *x, const lbfgsfloatval_t *y, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		z[i] = x[i] - y[i];
-	}
-}
-
-inline static void vecscale(lbfgsfloatval_t *y, const lbfgsfloatval_t c, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		y[i] *= c;
-	}
-}
-
-inline static void vecmul(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
-{
-	int i;
-
-	for (i = 0;i < n;++i) {
-		y[i] *= x[i];
-	}
-}
-
-inline static void vecdot(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const lbfgsfloatval_t *y, const int n)
-{
-	int i;
-	*s = 0.;
-	for (i = 0;i < n;++i) {
-		*s += x[i] * y[i];
-	}
-}
-
-inline static void vecnorm(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const int n)
-{
-	vecdot(s, x, x, n);
-	*s = (lbfgsfloatval_t)sqrt(*s);
-}
-
-inline static void vecrnorm(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const int n)
-{
-	vecnorm(s, x, n);
-	*s = (lbfgsfloatval_t)(1.0 / *s);
-}
diff --git a/arithmetic_sse_double.h b/arithmetic_sse_double.h
deleted file mode 100644
index e69f7c1..0000000
--- a/arithmetic_sse_double.h
+++ /dev/null
@@ -1,279 +0,0 @@
-/*
- *      SSE2 implementation of vector oprations (64bit double).
- *
- * Copyright (c) 2007, Naoaki Okazaki
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
-/* $Id: arithmetic_sse_double.h 2 2007-10-20 01:38:42Z naoaki $ */
-
-#include <stdlib.h>
-#include <malloc.h>
-#include <memory.h>
-
-#if		1400 <= _MSC_VER
-#include <intrin.h>
-#endif
-
-#ifndef _MSC_VER
-#include <emmintrin.h>
-#endif
-
-inline static void* vecalloc(size_t size)
-{
-	void *memblock = _aligned_malloc(size, 16);
-	if (memblock != NULL) {
-		memset(memblock, 0, size);
-	}
-	return memblock;
-}
-
-inline static void vecfree(void *memblock)
-{
-	_aligned_free(memblock);
-}
-
-#define	fsigndiff(x, y) \
-	((_mm_movemask_pd(_mm_set_pd(*(x), *(y))) + 1) & 0x002)
-
-#define	vecset(x, c, n) \
-{ \
-	int i; \
-	__m128d XMM0 = _mm_set1_pd(c); \
-	for (i = 0;i < (n);i += 8) { \
-		_mm_store_pd((x)+i  , XMM0); \
-		_mm_store_pd((x)+i+2, XMM0); \
-		_mm_store_pd((x)+i+4, XMM0); \
-		_mm_store_pd((x)+i+6, XMM0); \
-	} \
-}
-
-#define	veccpy(y, x, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 8) { \
-		__m128d XMM0 = _mm_load_pd((x)+i  ); \
-		__m128d XMM1 = _mm_load_pd((x)+i+2); \
-		__m128d XMM2 = _mm_load_pd((x)+i+4); \
-		__m128d XMM3 = _mm_load_pd((x)+i+6); \
-		_mm_store_pd((y)+i  , XMM0); \
-		_mm_store_pd((y)+i+2, XMM1); \
-		_mm_store_pd((y)+i+4, XMM2); \
-		_mm_store_pd((y)+i+6, XMM3); \
-	} \
-}
-
-#define	vecncpy(y, x, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 8) { \
-		__m128d XMM0 = _mm_setzero_pd(); \
-		__m128d XMM1 = _mm_setzero_pd(); \
-		__m128d XMM2 = _mm_setzero_pd(); \
-		__m128d XMM3 = _mm_setzero_pd(); \
-		__m128d XMM4 = _mm_load_pd((x)+i  ); \
-		__m128d XMM5 = _mm_load_pd((x)+i+2); \
-		__m128d XMM6 = _mm_load_pd((x)+i+4); \
-		__m128d XMM7 = _mm_load_pd((x)+i+6); \
-		XMM0 = _mm_sub_pd(XMM0, XMM4); \
-		XMM1 = _mm_sub_pd(XMM1, XMM5); \
-		XMM2 = _mm_sub_pd(XMM2, XMM6); \
-		XMM3 = _mm_sub_pd(XMM3, XMM7); \
-		_mm_store_pd((y)+i  , XMM0); \
-		_mm_store_pd((y)+i+2, XMM1); \
-		_mm_store_pd((y)+i+4, XMM2); \
-		_mm_store_pd((y)+i+6, XMM3); \
-	} \
-}
-
-#define	vecadd(y, x, c, n) \
-{ \
-	int i; \
-	__m128d XMM7 = _mm_set1_pd(c); \
-	for (i = 0;i < (n);i += 4) { \
-		__m128d XMM0 = _mm_load_pd((x)+i  ); \
-		__m128d XMM1 = _mm_load_pd((x)+i+2); \
-		__m128d XMM2 = _mm_load_pd((y)+i  ); \
-		__m128d XMM3 = _mm_load_pd((y)+i+2); \
-		XMM0 = _mm_mul_pd(XMM0, XMM7); \
-		XMM1 = _mm_mul_pd(XMM1, XMM7); \
-		XMM2 = _mm_add_pd(XMM2, XMM0); \
-		XMM3 = _mm_add_pd(XMM3, XMM1); \
-		_mm_store_pd((y)+i  , XMM2); \
-		_mm_store_pd((y)+i+2, XMM3); \
-	} \
-}
-
-#define	vecdiff(z, x, y, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 8) { \
-		__m128d XMM0 = _mm_load_pd((x)+i  ); \
-		__m128d XMM1 = _mm_load_pd((x)+i+2); \
-		__m128d XMM2 = _mm_load_pd((x)+i+4); \
-		__m128d XMM3 = _mm_load_pd((x)+i+6); \
-		__m128d XMM4 = _mm_load_pd((y)+i  ); \
-		__m128d XMM5 = _mm_load_pd((y)+i+2); \
-		__m128d XMM6 = _mm_load_pd((y)+i+4); \
-		__m128d XMM7 = _mm_load_pd((y)+i+6); \
-		XMM0 = _mm_sub_pd(XMM0, XMM4); \
-		XMM1 = _mm_sub_pd(XMM1, XMM5); \
-		XMM2 = _mm_sub_pd(XMM2, XMM6); \
-		XMM3 = _mm_sub_pd(XMM3, XMM7); \
-		_mm_store_pd((z)+i  , XMM0); \
-		_mm_store_pd((z)+i+2, XMM1); \
-		_mm_store_pd((z)+i+4, XMM2); \
-		_mm_store_pd((z)+i+6, XMM3); \
-	} \
-}
-
-#define	vecscale(y, c, n) \
-{ \
-	int i; \
-	__m128d XMM7 = _mm_set1_pd(c); \
-	for (i = 0;i < (n);i += 4) { \
-		__m128d XMM0 = _mm_load_pd((y)+i  ); \
-		__m128d XMM1 = _mm_load_pd((y)+i+2); \
-		XMM0 = _mm_mul_pd(XMM0, XMM7); \
-		XMM1 = _mm_mul_pd(XMM1, XMM7); \
-		_mm_store_pd((y)+i  , XMM0); \
-		_mm_store_pd((y)+i+2, XMM1); \
-	} \
-}
-
-#define vecmul(y, x, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 8) { \
-		__m128d XMM0 = _mm_load_pd((x)+i  ); \
-		__m128d XMM1 = _mm_load_pd((x)+i+2); \
-		__m128d XMM2 = _mm_load_pd((x)+i+4); \
-		__m128d XMM3 = _mm_load_pd((x)+i+6); \
-		__m128d XMM4 = _mm_load_pd((y)+i  ); \
-		__m128d XMM5 = _mm_load_pd((y)+i+2); \
-		__m128d XMM6 = _mm_load_pd((y)+i+4); \
-		__m128d XMM7 = _mm_load_pd((y)+i+6); \
-		XMM4 = _mm_mul_pd(XMM4, XMM0); \
-		XMM5 = _mm_mul_pd(XMM5, XMM1); \
-		XMM6 = _mm_mul_pd(XMM6, XMM2); \
-		XMM7 = _mm_mul_pd(XMM7, XMM3); \
-		_mm_store_pd((y)+i  , XMM4); \
-		_mm_store_pd((y)+i+2, XMM5); \
-		_mm_store_pd((y)+i+4, XMM6); \
-		_mm_store_pd((y)+i+6, XMM7); \
-	} \
-}
-
-
-
-#if		3 <= __SSE__
-/*
-	Horizontal add with haddps SSE3 instruction. The work register (rw)
-	is unused.
- */
-#define	__horizontal_sum(r, rw) \
-	r = _mm_hadd_ps(r, r); \
-	r = _mm_hadd_ps(r, r);
-
-#else
-/*
-	Horizontal add with SSE instruction. The work register (rw) is used.
- */
-#define	__horizontal_sum(r, rw) \
-	rw = r; \
-	r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(1, 0, 3, 2)); \
-	r = _mm_add_ps(r, rw); \
-	rw = r; \
-	r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(2, 3, 0, 1)); \
-	r = _mm_add_ps(r, rw);
-
-#endif
-
-#define	vecdot(s, x, y, n) \
-{ \
-	int i; \
-	__m128d XMM0 = _mm_setzero_pd(); \
-	__m128d XMM1 = _mm_setzero_pd(); \
-	__m128d XMM2, XMM3, XMM4, XMM5; \
-	for (i = 0;i < (n);i += 4) { \
-		XMM2 = _mm_load_pd((x)+i  ); \
-		XMM3 = _mm_load_pd((x)+i+2); \
-		XMM4 = _mm_load_pd((y)+i  ); \
-		XMM5 = _mm_load_pd((y)+i+2); \
-		XMM2 = _mm_mul_pd(XMM2, XMM4); \
-		XMM3 = _mm_mul_pd(XMM3, XMM5); \
-		XMM0 = _mm_add_pd(XMM0, XMM2); \
-		XMM1 = _mm_add_pd(XMM1, XMM3); \
-	} \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	_mm_store_sd((s), XMM0); \
-}
-
-#define	vecnorm(s, x, n) \
-{ \
-	int i; \
-	__m128d XMM0 = _mm_setzero_pd(); \
-	__m128d XMM1 = _mm_setzero_pd(); \
-	__m128d XMM2, XMM3, XMM4, XMM5; \
-	for (i = 0;i < (n);i += 4) { \
-		XMM2 = _mm_load_pd((x)+i  ); \
-		XMM3 = _mm_load_pd((x)+i+2); \
-		XMM4 = XMM2; \
-		XMM5 = XMM3; \
-		XMM2 = _mm_mul_pd(XMM2, XMM4); \
-		XMM3 = _mm_mul_pd(XMM3, XMM5); \
-		XMM0 = _mm_add_pd(XMM0, XMM2); \
-		XMM1 = _mm_add_pd(XMM1, XMM3); \
-	} \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	XMM0 = _mm_sqrt_pd(XMM0); \
-	_mm_store_sd((s), XMM0); \
-}
-
-
-#define	vecrnorm(s, x, n) \
-{ \
-	int i; \
-	__m128d XMM0 = _mm_setzero_pd(); \
-	__m128d XMM1 = _mm_setzero_pd(); \
-	__m128d XMM2, XMM3, XMM4, XMM5; \
-	for (i = 0;i < (n);i += 4) { \
-		XMM2 = _mm_load_pd((x)+i  ); \
-		XMM3 = _mm_load_pd((x)+i+2); \
-		XMM4 = XMM2; \
-		XMM5 = XMM3; \
-		XMM2 = _mm_mul_pd(XMM2, XMM4); \
-		XMM3 = _mm_mul_pd(XMM3, XMM5); \
-		XMM0 = _mm_add_pd(XMM0, XMM2); \
-		XMM1 = _mm_add_pd(XMM1, XMM3); \
-	} \
-	XMM2 = _mm_set1_pd(1.0); \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \
-	XMM0 = _mm_add_pd(XMM0, XMM1); \
-	XMM0 = _mm_sqrt_pd(XMM0); \
-	XMM2 = _mm_div_pd(XMM2, XMM0); \
-	_mm_store_sd((s), XMM2); \
-}
diff --git a/arithmetic_sse_float.h b/arithmetic_sse_float.h
deleted file mode 100644
index 315d778..0000000
--- a/arithmetic_sse_float.h
+++ /dev/null
@@ -1,289 +0,0 @@
-/*
- *      SSE/SSE3 implementation of vector oprations (32bit float).
- *
- * Copyright (c) 2007, Naoaki Okazaki
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
-/* $Id: arithmetic_sse_float.h 2 2007-10-20 01:38:42Z naoaki $ */
-
-#include <stdlib.h>
-#include <malloc.h>
-#include <memory.h>
-
-#if		1400 <= _MSC_VER
-#include <intrin.h>
-#endif
-
-/* this block is added by laye */
-#ifndef _MSC_VER
-#include <xmmintrin.h>
-#include <pmmintrin.h>
-#endif
-
-#if		LBFGS_FLOAT == 32 && LBFGS_IEEE_FLOAT
-#define	fsigndiff(x, y)	(((*(uint32_t*)(x)) ^ (*(uint32_t*)(y))) & 0x80000000U)
-#else
-#define	fsigndiff(x, y) (*(x) * (*(y) / fabs(*(y))) < 0.)
-#endif/*LBFGS_IEEE_FLOAT*/
-
-inline static void* vecalloc(size_t size)
-{
-	void *memblock = _aligned_malloc(size, 16);
-	if (memblock != NULL) {
-		memset(memblock, 0, size);
-	}
-	return memblock;
-}
-
-inline static void vecfree(void *memblock)
-{
-	_aligned_free(memblock);
-}
-
-#define	vecset(x, c, n) \
-{ \
-	int i; \
-	__m128 XMM0 = _mm_set_ps1(c); \
-	for (i = 0;i < (n);i += 16) { \
-		_mm_store_ps((x)+i   , XMM0); \
-		_mm_store_ps((x)+i+ 4, XMM0); \
-		_mm_store_ps((x)+i+ 8, XMM0); \
-		_mm_store_ps((x)+i+12, XMM0); \
-	} \
-}
-
-#define	veccpy(y, x, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 16) { \
-		__m128 XMM0 = _mm_load_ps((x)+i   ); \
-		__m128 XMM1 = _mm_load_ps((x)+i+ 4); \
-		__m128 XMM2 = _mm_load_ps((x)+i+ 8); \
-		__m128 XMM3 = _mm_load_ps((x)+i+12); \
-		_mm_store_ps((y)+i   , XMM0); \
-		_mm_store_ps((y)+i+ 4, XMM1); \
-		_mm_store_ps((y)+i+ 8, XMM2); \
-		_mm_store_ps((y)+i+12, XMM3); \
-	} \
-}
-
-#define	vecncpy(y, x, n) \
-{ \
-	int i; \
-	const uint32_t mask = 0x80000000; \
-	__m128 XMM4 = _mm_load_ps1((float*)&mask); \
-	for (i = 0;i < (n);i += 16) { \
-		__m128 XMM0 = _mm_load_ps((x)+i   ); \
-		__m128 XMM1 = _mm_load_ps((x)+i+ 4); \
-		__m128 XMM2 = _mm_load_ps((x)+i+ 8); \
-		__m128 XMM3 = _mm_load_ps((x)+i+12); \
-		XMM0 = _mm_xor_ps(XMM0, XMM4); \
-		XMM1 = _mm_xor_ps(XMM1, XMM4); \
-		XMM2 = _mm_xor_ps(XMM2, XMM4); \
-		XMM3 = _mm_xor_ps(XMM3, XMM4); \
-		_mm_store_ps((y)+i   , XMM0); \
-		_mm_store_ps((y)+i+ 4, XMM1); \
-		_mm_store_ps((y)+i+ 8, XMM2); \
-		_mm_store_ps((y)+i+12, XMM3); \
-	} \
-}
-
-#define	vecadd(y, x, c, n) \
-{ \
-	int i; \
-	__m128 XMM7 = _mm_set_ps1(c); \
-	for (i = 0;i < (n);i += 8) { \
-		__m128 XMM0 = _mm_load_ps((x)+i  ); \
-		__m128 XMM1 = _mm_load_ps((x)+i+4); \
-		__m128 XMM2 = _mm_load_ps((y)+i  ); \
-		__m128 XMM3 = _mm_load_ps((y)+i+4); \
-		XMM0 = _mm_mul_ps(XMM0, XMM7); \
-		XMM1 = _mm_mul_ps(XMM1, XMM7); \
-		XMM2 = _mm_add_ps(XMM2, XMM0); \
-		XMM3 = _mm_add_ps(XMM3, XMM1); \
-		_mm_store_ps((y)+i  , XMM2); \
-		_mm_store_ps((y)+i+4, XMM3); \
-	} \
-}
-
-#define	vecdiff(z, x, y, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 16) { \
-		__m128 XMM0 = _mm_load_ps((x)+i   ); \
-		__m128 XMM1 = _mm_load_ps((x)+i+ 4); \
-		__m128 XMM2 = _mm_load_ps((x)+i+ 8); \
-		__m128 XMM3 = _mm_load_ps((x)+i+12); \
-		__m128 XMM4 = _mm_load_ps((y)+i   ); \
-		__m128 XMM5 = _mm_load_ps((y)+i+ 4); \
-		__m128 XMM6 = _mm_load_ps((y)+i+ 8); \
-		__m128 XMM7 = _mm_load_ps((y)+i+12); \
-		XMM0 = _mm_sub_ps(XMM0, XMM4); \
-		XMM1 = _mm_sub_ps(XMM1, XMM5); \
-		XMM2 = _mm_sub_ps(XMM2, XMM6); \
-		XMM3 = _mm_sub_ps(XMM3, XMM7); \
-		_mm_store_ps((z)+i   , XMM0); \
-		_mm_store_ps((z)+i+ 4, XMM1); \
-		_mm_store_ps((z)+i+ 8, XMM2); \
-		_mm_store_ps((z)+i+12, XMM3); \
-	} \
-}
-
-#define	vecscale(y, c, n) \
-{ \
-	int i; \
-	__m128 XMM7 = _mm_set_ps1(c); \
-	for (i = 0;i < (n);i += 8) { \
-		__m128 XMM0 = _mm_load_ps((y)+i  ); \
-		__m128 XMM1 = _mm_load_ps((y)+i+4); \
-		XMM0 = _mm_mul_ps(XMM0, XMM7); \
-		XMM1 = _mm_mul_ps(XMM1, XMM7); \
-		_mm_store_ps((y)+i  , XMM0); \
-		_mm_store_ps((y)+i+4, XMM1); \
-	} \
-}
-
-#define vecmul(y, x, n) \
-{ \
-	int i; \
-	for (i = 0;i < (n);i += 16) { \
-		__m128 XMM0 = _mm_load_ps((x)+i   ); \
-		__m128 XMM1 = _mm_load_ps((x)+i+ 4); \
-		__m128 XMM2 = _mm_load_ps((x)+i+ 8); \
-		__m128 XMM3 = _mm_load_ps((x)+i+12); \
-		__m128 XMM4 = _mm_load_ps((y)+i   ); \
-		__m128 XMM5 = _mm_load_ps((y)+i+ 4); \
-		__m128 XMM6 = _mm_load_ps((y)+i+ 8); \
-		__m128 XMM7 = _mm_load_ps((y)+i+12); \
-		XMM4 = _mm_mul_ps(XMM4, XMM0); \
-		XMM5 = _mm_mul_ps(XMM5, XMM1); \
-		XMM6 = _mm_mul_ps(XMM6, XMM2); \
-		XMM7 = _mm_mul_ps(XMM7, XMM3); \
-		_mm_store_ps((y)+i   , XMM4); \
-		_mm_store_ps((y)+i+ 4, XMM5); \
-		_mm_store_ps((y)+i+ 8, XMM6); \
-		_mm_store_ps((y)+i+12, XMM7); \
-	} \
-}
-
-
-
-#if		3 <= __SSE__
-/*
-	Horizontal add with haddps SSE3 instruction. The work register (rw)
-	is unused.
- */
-#define	__horizontal_sum(r, rw) \
-	r = _mm_hadd_ps(r, r); \
-	r = _mm_hadd_ps(r, r);
-
-#else
-/*
-	Horizontal add with SSE instruction. The work register (rw) is used.
- */
-#define	__horizontal_sum(r, rw) \
-	rw = r; \
-	r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(1, 0, 3, 2)); \
-	r = _mm_add_ps(r, rw); \
-	rw = r; \
-	r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(2, 3, 0, 1)); \
-	r = _mm_add_ps(r, rw);
-
-#endif
-
-#define	vecdot(s, x, y, n) \
-{ \
-	int i; \
-	__m128 XMM0 = _mm_setzero_ps(); \
-	__m128 XMM1 = _mm_setzero_ps(); \
-	__m128 XMM2, XMM3, XMM4, XMM5; \
-	for (i = 0;i < (n);i += 8) { \
-		XMM2 = _mm_load_ps((x)+i  ); \
-		XMM3 = _mm_load_ps((x)+i+4); \
-		XMM4 = _mm_load_ps((y)+i  ); \
-		XMM5 = _mm_load_ps((y)+i+4); \
-		XMM2 = _mm_mul_ps(XMM2, XMM4); \
-		XMM3 = _mm_mul_ps(XMM3, XMM5); \
-		XMM0 = _mm_add_ps(XMM0, XMM2); \
-		XMM1 = _mm_add_ps(XMM1, XMM3); \
-	} \
-	XMM0 = _mm_add_ps(XMM0, XMM1); \
-	__horizontal_sum(XMM0, XMM1); \
-	_mm_store_ss((s), XMM0); \
-}
-
-#define	vecnorm(s, x, n) \
-{ \
-	int i; \
-	__m128 XMM0 = _mm_setzero_ps(); \
-	__m128 XMM1 = _mm_setzero_ps(); \
-	__m128 XMM2, XMM3; \
-	for (i = 0;i < (n);i += 8) { \
-		XMM2 = _mm_load_ps((x)+i  ); \
-		XMM3 = _mm_load_ps((x)+i+4); \
-		XMM2 = _mm_mul_ps(XMM2, XMM2); \
-		XMM3 = _mm_mul_ps(XMM3, XMM3); \
-		XMM0 = _mm_add_ps(XMM0, XMM2); \
-		XMM1 = _mm_add_ps(XMM1, XMM3); \
-	} \
-	XMM0 = _mm_add_ps(XMM0, XMM1); \
-	__horizontal_sum(XMM0, XMM1); \
-	XMM2 = XMM0; \
-	XMM1 = _mm_rsqrt_ss(XMM0); \
-	XMM3 = XMM1; \
-	XMM1 = _mm_mul_ss(XMM1, XMM1); \
-	XMM1 = _mm_mul_ss(XMM1, XMM3); \
-	XMM1 = _mm_mul_ss(XMM1, XMM0); \
-	XMM1 = _mm_mul_ss(XMM1, _mm_set_ss(-0.5f)); \
-	XMM3 = _mm_mul_ss(XMM3, _mm_set_ss(1.5f)); \
-	XMM3 = _mm_add_ss(XMM3, XMM1); \
-	XMM3 = _mm_mul_ss(XMM3, XMM2); \
-	_mm_store_ss((s), XMM3); \
-}
-
-#define	vecrnorm(s, x, n) \
-{ \
-	int i; \
-	__m128 XMM0 = _mm_setzero_ps(); \
-	__m128 XMM1 = _mm_setzero_ps(); \
-	__m128 XMM2, XMM3; \
-	for (i = 0;i < (n);i += 16) { \
-		XMM2 = _mm_load_ps((x)+i  ); \
-		XMM3 = _mm_load_ps((x)+i+4); \
-		XMM2 = _mm_mul_ps(XMM2, XMM2); \
-		XMM3 = _mm_mul_ps(XMM3, XMM3); \
-		XMM0 = _mm_add_ps(XMM0, XMM2); \
-		XMM1 = _mm_add_ps(XMM1, XMM3); \
-	} \
-	XMM0 = _mm_add_ps(XMM0, XMM1); \
-	__horizontal_sum(XMM0, XMM1); \
-	XMM2 = XMM0; \
-	XMM1 = _mm_rsqrt_ss(XMM0); \
-	XMM3 = XMM1; \
-	XMM1 = _mm_mul_ss(XMM1, XMM1); \
-	XMM1 = _mm_mul_ss(XMM1, XMM3); \
-	XMM1 = _mm_mul_ss(XMM1, XMM0); \
-	XMM1 = _mm_mul_ss(XMM1, _mm_set_ss(-0.5f)); \
-	XMM3 = _mm_mul_ss(XMM3, _mm_set_ss(1.5f)); \
-	XMM3 = _mm_add_ss(XMM3, XMM1); \
-	_mm_store_ss((s), XMM3); \
-}
diff --git a/lbfgs.c b/lbfgs.c
deleted file mode 100644
index f04f4e5..0000000
--- a/lbfgs.c
+++ /dev/null
@@ -1,1105 +0,0 @@
-/*
- *      Limited memory BFGS (L-BFGS).
- *
- * Copyright (c) 1990, Jorge Nocedal
- * Copyright (c) 2007, Naoaki Okazaki
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
-/* $Id: lbfgs.c 56 2007-12-16 08:01:47Z naoaki $ */
-
-/*
-This library is a C port of the FORTRAN implementation of Limited-memory
-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
-The original FORTRAN source code is available at:
-http://www.ece.northwestern.edu/~nocedal/lbfgs.html
-
-The L-BFGS algorithm is described in:
-	- Jorge Nocedal.
-	  Updating Quasi-Newton Matrices with Limited Storage.
-	  <i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
-	- Dong C. Liu and Jorge Nocedal.
-	  On the limited memory BFGS method for large scale optimization.
-	  <i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.
-
-The line search algorithms used in this implementation are described in:
-	- John E. Dennis and Robert B. Schnabel.
-	  <i>Numerical Methods for Unconstrained Optimization and Nonlinear
-	  Equations</i>, Englewood Cliffs, 1983.
-	- Jorge J. More and David J. Thuente.
-	  Line search algorithm with guaranteed sufficient decrease.
-	  <i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
-	  pp. 286-307, 1994.
-
-This library also implements Orthant-Wise Limited-memory Quasi-Newton (OW-LQN)
-method presented in:
-	- Galen Andrew and Jianfeng Gao.
-	  Scalable training of L1-regularized log-linear models.
-	  In <i>Proceedings of the 24th International Conference on Machine
-	  Learning (ICML 2007)</i>, pp. 33-40, 2007.
-
-I would like to thank the original author, Jorge Nocedal, who has been
-distributing the effieicnt and explanatory implementation in an open source
-licence.
-*/
-
-#ifdef	HAVE_CONFIG_H
-#include <config.h>
-#endif/*HAVE_CONFIG_H*/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-
-#include <lbfgs.h>
-
-#ifdef	_MSC_VER
-#define	inline	__inline
-typedef unsigned int uint32_t;
-#endif/*_MSC_VER*/
-
-/* this block is added by laye */
-#ifndef _MSC_VER
-#include <stdint.h>
-#endif/*_MSC_VER*/
-
-#if	defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 32
-/* Use SSE optimization for 32bit float precision. */
-#include "arithmetic_sse_float.h"
-
-#elif	defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 64
-/* Use SSE2 optimization for 64bit double precision. */
-#include "arithmetic_sse_double.h"
-
-#else
-/* No CPU specific optimization. */
-#include "arithmetic_ansi.h"
-
-#endif
-
-#define min2(a, b)		((a) <= (b) ? (a) : (b))
-#define max2(a, b)		((a) >= (b) ? (a) : (b))
-#define	max3(a, b, c)	max2(max2((a), (b)), (c));
-
-struct tag_iteration_data {
-	lbfgsfloatval_t alpha;
-	lbfgsfloatval_t *s;		/* [n] */
-	lbfgsfloatval_t *y;		/* [n] */
-	lbfgsfloatval_t ys;		/* vecdot(y, s) */
-};
-typedef struct tag_iteration_data iteration_data_t;
-
-static const lbfgs_parameter_t _defparam = {
-	6, 1e-5, 0, 20,
-	1e-20, 1e20, 1e-4, 0.9, 1.0e-16,
-	0.0,
-};
-
-/* Forward function declarations. */
-
-static int line_search_backtracking(
-	int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *f,
-	lbfgsfloatval_t *g,
-	lbfgsfloatval_t *s,
-	lbfgsfloatval_t *stp,
-	lbfgsfloatval_t *wa,
-	lbfgs_evaluate_t proc_evaluate,
-	void *instance,
-	const lbfgs_parameter_t *param
-	);
-
-static int line_search(
-	int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *f,
-	lbfgsfloatval_t *g,
-	lbfgsfloatval_t *s,
-	lbfgsfloatval_t *stp,
-	lbfgsfloatval_t *wa,
-	lbfgs_evaluate_t proc_evaluate,
-	void *instance,
-	const lbfgs_parameter_t *param
-	);
-
-static int update_trial_interval(
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *fx,
-	lbfgsfloatval_t *dx,
-	lbfgsfloatval_t *y,
-	lbfgsfloatval_t *fy,
-	lbfgsfloatval_t *dy,
-	lbfgsfloatval_t *t,
-	lbfgsfloatval_t *ft,
-	lbfgsfloatval_t *dt,
-	const lbfgsfloatval_t tmin,
-	const lbfgsfloatval_t tmax,
-	int *brackt
-	);
-
-
-
-
-void lbfgs_parameter_init(lbfgs_parameter_t *param)
-{
-	memcpy(param, &_defparam, sizeof(*param));
-}
-
-int lbfgs(
-	const int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *ptr_fx,
-	lbfgs_evaluate_t proc_evaluate,
-	lbfgs_progress_t proc_progress,
-	void *instance,
-	lbfgs_parameter_t *_param
-	)
-{
-	int ret;
-	int i, j, k, ls, end, bound;
-	lbfgsfloatval_t step;
-
-	/* Constant parameters and their default values. */
-	const lbfgs_parameter_t* param = (_param != NULL) ? _param : &_defparam;
-	const int m = param->m;
-
-	lbfgsfloatval_t *xp = NULL, *g = NULL, *gp = NULL, *d = NULL, *w = NULL;
-	iteration_data_t *lm = NULL, *it = NULL;
-	lbfgsfloatval_t ys, yy;
-	lbfgsfloatval_t norm, xnorm, gnorm, beta;
-	lbfgsfloatval_t fx = 0.;
-
-	/* Check the input parameters for errors. */
-	if (n <= 0) {
-		return LBFGSERR_INVALID_N;
-	}
-#if		defined(USE_SSE) && defined(__SSE__)
-	if (n % 8 != 0) {
-		return LBFGSERR_INVALID_N_SSE;
-	}
-#endif/*defined(__SSE__)*/
-	if (param->min_step < 0.) {
-		return LBFGSERR_INVALID_MINSTEP;
-	}
-	if (param->max_step < param->min_step) {
-		return LBFGSERR_INVALID_MAXSTEP;
-	}
-	if (param->ftol < 0.) {
-		return LBFGSERR_INVALID_FTOL;
-	}
-	if (param->gtol < 0.) {
-		return LBFGSERR_INVALID_GTOL;
-	}
-	if (param->xtol < 0.) {
-		return LBFGSERR_INVALID_XTOL;
-	}
-	if (param->max_linesearch <= 0) {
-		return LBFGSERR_INVALID_MAXLINESEARCH;
-	}
-	if (param->orthantwise_c < 0.) {
-		return LBFGSERR_INVALID_ORTHANTWISE;
-	}
-
-	/* Allocate working space. */
-	xp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-	g = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-	gp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-	d = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-	w = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-	if (xp == NULL || g == NULL || gp == NULL || d == NULL || w == NULL) {
-		ret = LBFGSERR_OUTOFMEMORY;
-		goto lbfgs_exit;
-	}
-
-	/* Allocate limited memory storage. */
-	lm = (iteration_data_t*)vecalloc(m * sizeof(iteration_data_t));
-	if (lm == NULL) {
-		ret = LBFGSERR_OUTOFMEMORY;
-		goto lbfgs_exit;
-	}
-
-	/* Initialize the limited memory. */
-	for (i = 0;i < m;++i) {
-		it = &lm[i];
-		it->alpha = 0;
-		it->ys = 0;
-		it->s = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-		it->y = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
-		if (it->s == NULL || it->y == NULL) {
-			ret = LBFGSERR_OUTOFMEMORY;
-			goto lbfgs_exit;
-		}
-	}
-
-	/* Evaluate the function value and its gradient. */
-    fx = proc_evaluate(instance, x, g, n, 0);
-	if (0. < param->orthantwise_c) {
-		/* Compute L1-regularization factor and add it to the object value. */
-		norm = 0.;
-		for (i = 0;i < n;++i) {
-			norm += fabs(x[i]);
-		}
-		fx += norm * param->orthantwise_c;
-	}
-
-	/* We assume the initial hessian matrix H_0 as the identity matrix. */
-	if (param->orthantwise_c == 0.) {
-		vecncpy(d, g, n);
-	} else {
-		/* Compute the negative of psuedo-gradients. */
-		for (i = 0;i < n;++i) {
-			if (x[i] < 0.) {
-				/* Differentiable. */
-				d[i] = -g[i] + param->orthantwise_c;
-			} else if (0. < x[i]) {
-				/* Differentiable. */
-				d[i] = -g[i] - param->orthantwise_c;
-			} else {
-				if (g[i] < -param->orthantwise_c) {
-					/* Take the right partial derivative. */
-					d[i] = -g[i] - param->orthantwise_c;
-				} else if (param->orthantwise_c < g[i]) {
-					/* Take the left partial derivative. */
-					d[i] = -g[i] + param->orthantwise_c;
-				} else {
-					d[i] = 0.;
-				}
-			}
-		}
-	}
-
-	/* Compute the initial step:
-		step = 1.0 / sqrt(vecdot(d, d, n))
-	 */
-	vecrnorm(&step, d, n);
-
-	k = 1;
-	end = 0;
-	for (;;) {
-		/* Store the current position and gradient vectors. */
-		veccpy(xp, x, n);
-		veccpy(gp, g, n);
-
-		/* Search for an optimal step. */
-		ls = line_search(
-			n, x, &fx, g, d, &step, w, proc_evaluate, instance, param);
-		if (ls < 0) {
-			ret = ls;
-			goto lbfgs_exit;
-		}
-
-		/* Compute x and g norms. */
-		vecnorm(&gnorm, g, n);
-		vecnorm(&xnorm, x, n);
-
-		/* Report the progress. */
-		if (proc_progress) {
-			if (ret = proc_progress(instance, x, g, fx, xnorm, gnorm, step, n, k, ls)) {
-				goto lbfgs_exit;
-			}
-		}
-
-		/*
-			Convergence test.
-			The criterion is given by the following formula:
-				|g(x)| / \max(1, |x|) < \epsilon
-		 */
-		if (xnorm < 1.0) xnorm = 1.0;
-		if (gnorm / xnorm <= param->epsilon) {
-			/* Convergence. */
-			ret = 0;
-			break;
-		}
-
-		if (param->max_iterations != 0 && param->max_iterations < k+1) {
-			/* Maximum number of iterations. */
-			ret = LBFGSERR_MAXIMUMITERATION;
-			break;
-		}
-
-		/*
-			Update vectors s and y:
-				s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
-				y_{k+1} = g_{k+1} - g_{k}.
-		 */
-		it = &lm[end];
-		vecdiff(it->s, x, xp, n);
-		vecdiff(it->y, g, gp, n);
-
-		/*
-			Compute scalars ys and yy:
-				ys = y^t \cdot s = 1 / \rho.
-				yy = y^t \cdot y.
-			Notice that yy is used for scaling the hessian matrix H_0 (Cholesky factor).
-		 */
-		vecdot(&ys, it->y, it->s, n);
-		vecdot(&yy, it->y, it->y, n);
-		it->ys = ys;
-
-		/*
-			Recursive formula to compute dir = -(H \cdot g).
-				This is described in page 779 of:
-				Jorge Nocedal.
-				Updating Quasi-Newton Matrices with Limited Storage.
-				Mathematics of Computation, Vol. 35, No. 151,
-				pp. 773--782, 1980.
-		 */
-		bound = (m <= k) ? m : k;
-		++k;
-		end = (end + 1) % m;
-
-		if (param->orthantwise_c == 0.) {
-			/* Compute the negative of gradients. */
-			vecncpy(d, g, n);
-		} else {
-			/* Compute the negative of psuedo-gradients. */
-			for (i = 0;i < n;++i) {
-				if (x[i] < 0.) {
-					/* Differentiable. */
-					d[i] = -g[i] + param->orthantwise_c;
-				} else if (0. < x[i]) {
-					/* Differentiable. */
-					d[i] = -g[i] - param->orthantwise_c;
-				} else {
-					if (g[i] < -param->orthantwise_c) {
-						/* Take the right partial derivative. */
-						d[i] = -g[i] - param->orthantwise_c;
-					} else if (param->orthantwise_c < g[i]) {
-						/* Take the left partial derivative. */
-						d[i] = -g[i] + param->orthantwise_c;
-					} else {
-						d[i] = 0.;
-					}
-				}
-			}
-			/* Store the steepest direction.*/
-			veccpy(w, d, n);
-		}
-
-		j = end;
-		for (i = 0;i < bound;++i) {
-			j = (j + m - 1) % m;	/* if (--j == -1) j = m-1; */
-			it = &lm[j];
-			/* \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}. */
-			vecdot(&it->alpha, it->s, d, n);
-			it->alpha /= it->ys;
-			/* q_{i} = q_{i+1} - \alpha_{i} y_{i}. */
-			vecadd(d, it->y, -it->alpha, n);
-		}
-
-		vecscale(d, ys / yy, n);
-
-		for (i = 0;i < bound;++i) {
-			it = &lm[j];
-			/* \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}. */
-			vecdot(&beta, it->y, d, n);
-			beta /= it->ys;
-			/* \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}. */
-			vecadd(d, it->s, it->alpha - beta, n);
-			j = (j + 1) % m;		/* if (++j == m) j = 0; */
-		}
-
-		/*
-			Constrain the search direction for orthant-wise updates.
-		 */
-		if (param->orthantwise_c != 0.) {
-			for (i = 0;i < n;++i) {
-				if (d[i] * w[i] <= 0) {
-					d[i] = 0;
-				}
-			}
-		}
-
-		/*
-			Now the search direction d is ready. We try step = 1 first.
-		 */
-		step = 1.0;
-	}
-
-lbfgs_exit:
-	/* Return the final value of the objective function. */
-	if (ptr_fx != NULL) {
-		*ptr_fx = fx;
-	}
-
-	/* Free memory blocks used by this function. */
-	if (lm != NULL) {
-		for (i = 0;i < m;++i) {
-			vecfree(lm[i].s);
-			vecfree(lm[i].y);
-		}
-		vecfree(lm);
-	}
-	vecfree(w);
-	vecfree(d);
-	vecfree(gp);
-	vecfree(g);
-	vecfree(xp);
-
-	return ret;
-}
-
-
-
-static int line_search_backtracking(
-	int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *f,
-	lbfgsfloatval_t *g,
-	lbfgsfloatval_t *s,
-	lbfgsfloatval_t *stp,
-	lbfgsfloatval_t *xp,
-	lbfgs_evaluate_t proc_evaluate,
-	void *instance,
-	const lbfgs_parameter_t *param
-	)
-{
-	int i, ret = 0, count = 0;
-	lbfgsfloatval_t width = 0.5, norm = 0.;
-	lbfgsfloatval_t finit, dginit = 0., dg, dgtest;
-
-	/* Check the input parameters for errors. */
-	if (*stp <= 0.) {
-		return LBFGSERR_INVALIDPARAMETERS;
-	}
-
-	/* Compute the initial gradient in the search direction. */
-	if (param->orthantwise_c != 0.) {
-		/* Use psuedo-gradients for orthant-wise updates. */
-		for (i = 0;i < n;++i) {
-			/* Notice that:
-				(-s[i] < 0)  <==>  (g[i] < -param->orthantwise_c)
-				(-s[i] > 0)  <==>  (param->orthantwise_c < g[i])
-			   as the result of the lbfgs() function for orthant-wise updates.
-			 */
-			if (s[i] != 0.) {
-				if (x[i] < 0.) {
-					/* Differentiable. */
-					dginit += s[i] * (g[i] - param->orthantwise_c);
-				} else if (0. < x[i]) {
-					/* Differentiable. */
-					dginit += s[i] * (g[i] + param->orthantwise_c);
-				} else if (s[i] < 0.) {
-					/* Take the left partial derivative. */
-					dginit += s[i] * (g[i] - param->orthantwise_c);
-				} else if (0. < s[i]) {
-					/* Take the right partial derivative. */
-					dginit += s[i] * (g[i] + param->orthantwise_c);
-				}
-			}
-		}
-	} else {
-		vecdot(&dginit, g, s, n);
-	}
-
-	/* Make sure that s points to a descent direction. */
-	if (0 < dginit) {
-		return LBFGSERR_INCREASEGRADIENT;
-	}
-
-	/* The initial value of the objective function. */
-	finit = *f;
-	dgtest = param->ftol * dginit;
-
-	/* Copy the value of x to the work area. */
-	veccpy(xp, x, n);
-
-	for (;;) {
-		veccpy(x, xp, n);
-		vecadd(x, s, *stp, n);
-
-		if (param->orthantwise_c != 0.) {
-			/* The current point is projected onto the orthant of the initial one. */
-			for (i = 0;i < n;++i) {
-				if (x[i] * xp[i] < 0.) {
-					x[i] = 0.;
-				}
-			}
-		}
-
-		/* Evaluate the function and gradient values. */
-		*f = proc_evaluate(instance, x, g, n, *stp);
-		if (0. < param->orthantwise_c) {
-			/* Compute L1-regularization factor and add it to the object value. */
-			norm = 0.;
-			for (i = 0;i < n;++i) {
-				norm += fabs(x[i]);
-			}
-			*f += norm * param->orthantwise_c;
-		}
-
-		vecdot(&dg, g, s, n);
-		++count;
-
-		if (*f <= finit + *stp * dgtest) {
-			/* The sufficient decrease condition. */
-			return count;
-		}
-		if (*stp < param->min_step) {
-			/* The step is the minimum value. */
-			ret = LBFGSERR_MINIMUMSTEP;
-			break;
-		}
-		if (param->max_linesearch <= count) {
-			/* Maximum number of iteration. */
-			ret = LBFGSERR_MAXIMUMLINESEARCH;
-			break;
-		}
-
-		(*stp) *= width;
-	}
-
-	/* Revert to the previous position. */
-	veccpy(x, xp, n);
-	return ret;
-}
-
-
-
-static int line_search(
-	int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *f,
-	lbfgsfloatval_t *g,
-	lbfgsfloatval_t *s,
-	lbfgsfloatval_t *stp,
-	lbfgsfloatval_t *wa,
-	lbfgs_evaluate_t proc_evaluate,
-	void *instance,
-	const lbfgs_parameter_t *param
-	)
-{
-	int i, count = 0;
-	int brackt, stage1, uinfo = 0;
-	lbfgsfloatval_t dg, norm;
-	lbfgsfloatval_t stx, fx, dgx;
-	lbfgsfloatval_t sty, fy, dgy;
-	lbfgsfloatval_t fxm, dgxm, fym, dgym, fm, dgm;
-	lbfgsfloatval_t finit, ftest1, dginit, dgtest;
-	lbfgsfloatval_t width, prev_width;
-	lbfgsfloatval_t stmin, stmax;
-
-	/* Check the input parameters for errors. */
-	if (*stp <= 0.) {
-		return LBFGSERR_INVALIDPARAMETERS;
-	}
-
-	/* Compute the initial gradient in the search direction. */
-	if (param->orthantwise_c != 0.) {
-		/* Use psuedo-gradients for orthant-wise updates. */
-		dginit = 0.;
-		for (i = 0;i < n;++i) {
-			/* Notice that:
-				(-s[i] < 0)  <==>  (g[i] < -param->orthantwise_c)
-				(-s[i] > 0)  <==>  (param->orthantwise_c < g[i])
-			   as the result of the lbfgs() function for orthant-wise updates.
-			 */
-			if (s[i] != 0.) {
-				if (x[i] < 0.) {
-					/* Differentiable. */
-					dginit += s[i] * (g[i] - param->orthantwise_c);
-				} else if (0. < x[i]) {
-					/* Differentiable. */
-					dginit += s[i] * (g[i] + param->orthantwise_c);
-				} else if (s[i] < 0.) {
-					/* Take the left partial derivative. */
-					dginit += s[i] * (g[i] - param->orthantwise_c);
-				} else if (0. < s[i]) {
-					/* Take the right partial derivative. */
-					dginit += s[i] * (g[i] + param->orthantwise_c);
-				}
-			}
-		}
-	} else {
-		vecdot(&dginit, g, s, n);
-	}
-
-	/* Make sure that s points to a descent direction. */
-	if (0 < dginit) {
-		return LBFGSERR_INCREASEGRADIENT;
-	}
-
-	/* Initialize local variables. */
-	brackt = 0;
-	stage1 = 1;
-	finit = *f;
-	dgtest = param->ftol * dginit;
-	width = param->max_step - param->min_step;
-	prev_width = 2.0 * width;
-
-	/* Copy the value of x to the work area. */
-	veccpy(wa, x, n);
-
-	/*
-		The variables stx, fx, dgx contain the values of the step,
-		function, and directional derivative at the best step.
-		The variables sty, fy, dgy contain the value of the step,
-		function, and derivative at the other endpoint of
-		the interval of uncertainty.
-		The variables stp, f, dg contain the values of the step,
-		function, and derivative at the current step.
-	*/
-	stx = sty = 0.;
-	fx = fy = finit;
-	dgx = dgy = dginit;
-
-	for (;;) {
-		/*
-			Set the minimum and maximum steps to correspond to the
-			present interval of uncertainty.
-		 */
-		if (brackt) {
-			stmin = min2(stx, sty);
-			stmax = max2(stx, sty);
-		} else {
-			stmin = stx;
-			stmax = *stp + 4.0 * (*stp - stx);
-		}
-
-		/* Clip the step in the range of [stpmin, stpmax]. */
-		if (*stp < param->min_step) *stp = param->min_step;
-		if (param->max_step < *stp) *stp = param->max_step;
-
-		/*
-			If an unusual termination is to occur then let
-			stp be the lowest point obtained so far.
-		 */
-		if ((brackt && ((*stp <= stmin || stmax <= *stp) || param->max_linesearch <= count + 1 || uinfo != 0)) || (brackt && (stmax - stmin <= param->xtol * stmax))) {
-			*stp = stx;
-		}
-
-		/*
-			Compute the current value of x:
-				x <- x + (*stp) * s.
-		 */
-		veccpy(x, wa, n);
-		vecadd(x, s, *stp, n);
-
-		if (param->orthantwise_c != 0.) {
-			/* The current point is projected onto the orthant of the previous one. */
-			for (i = 0;i < n;++i) {
-				if (x[i] * wa[i] < 0.) {
-					x[i] = 0.;
-				}
-			}
-		}
-
-		/* Evaluate the function and gradient values. */
-		*f = proc_evaluate(instance, x, g, n, *stp);
-		if (0. < param->orthantwise_c) {
-			/* Compute L1-regularization factor and add it to the object value. */
-			norm = 0.;
-			for (i = 0;i < n;++i) {
-				norm += fabs(x[i]);
-			}
-			*f += norm * param->orthantwise_c;
-		}
-
-		++count;
-
-		vecdot(&dg, g, s, n);
-		ftest1 = finit + *stp * dgtest;
-
-		/* Test for errors and convergence. */
-		if (brackt && ((*stp <= stmin || stmax <= *stp) || uinfo != 0)) {
-			/* Rounding errors prevent further progress. */
-			return LBFGSERR_ROUNDING_ERROR;
-		}
-		if (*stp == param->max_step && *f <= ftest1 && dg <= dgtest) {
-			/* The step is the maximum value. */
-			return LBFGSERR_MAXIMUMSTEP;
-		}
-		if (*stp == param->min_step && (ftest1 < *f || dgtest <= dg)) {
-			/* The step is the minimum value. */
-			return LBFGSERR_MINIMUMSTEP;
-		}
-		if (brackt && (stmax - stmin) <= param->xtol * stmax) {
-			/* Relative width of the interval of uncertainty is at most xtol. */
-			return LBFGSERR_WIDTHTOOSMALL;
-		}
-		if (param->max_linesearch <= count) {
-			/* Maximum number of iteration. */
-			return LBFGSERR_MAXIMUMLINESEARCH;
-		}
-		if (*f <= ftest1 && fabs(dg) <= param->gtol * (-dginit)) {
-			/* The sufficient decrease condition and the directional derivative condition hold. */
-			return count;
-		}
-
-		/*
-			In the first stage we seek a step for which the modified
-			function has a nonpositive value and nonnegative derivative.
-		 */
-		if (stage1 && *f <= ftest1 && min2(param->ftol, param->gtol) * dginit <= dg) {
-			stage1 = 0;
-		}
-
-		/*
-			A modified function is used to predict the step only if
-			we have not obtained a step for which the modified
-			function has a nonpositive function value and nonnegative
-			derivative, and if a lower function value has been
-			obtained but the decrease is not sufficient.
-		 */
-		if (stage1 && ftest1 < *f && *f <= fx) {
-		    /* Define the modified function and derivative values. */
-			fm = *f - *stp * dgtest;
-			fxm = fx - stx * dgtest;
-			fym = fy - sty * dgtest;
-			dgm = dg - dgtest;
-			dgxm = dgx - dgtest;
-			dgym = dgy - dgtest;
-
-			/*
-				Call update_trial_interval() to update the interval of
-				uncertainty and to compute the new step.
-			 */
-			uinfo = update_trial_interval(
-				&stx, &fxm, &dgxm,
-				&sty, &fym, &dgym,
-				stp, &fm, &dgm,
-				stmin, stmax, &brackt
-				);
-
-			/* Reset the function and gradient values for f. */
-			fx = fxm + stx * dgtest;
-			fy = fym + sty * dgtest;
-			dgx = dgxm + dgtest;
-			dgy = dgym + dgtest;
-		} else {
-			/*
-				Call update_trial_interval() to update the interval of
-				uncertainty and to compute the new step.
-			 */
-			uinfo = update_trial_interval(
-				&stx, &fx, &dgx,
-				&sty, &fy, &dgy,
-				stp, f, &dg,
-				stmin, stmax, &brackt
-				);
-		}
-
-		/*
-			Force a sufficient decrease in the interval of uncertainty.
-		 */
-		if (brackt) {
-			if (0.66 * prev_width <= fabs(sty - stx)) {
-				*stp = stx + 0.5 * (sty - stx);
-			}
-			prev_width = width;
-			width = fabs(sty - stx);
-		}
-	}
-
-	return LBFGSERR_LOGICERROR;
-}
-
-
-
-/**
- * Define the local variables for computing minimizers.
- */
-#define	USES_MINIMIZER \
-	lbfgsfloatval_t a, d, gamma, theta, p, q, r, s;
-
-/**
- * Find a minimizer of an interpolated cubic function.
- *	@param	cm		The minimizer of the interpolated cubic.
- *	@param	u		The value of one point, u.
- *	@param	fu		The value of f(u).
- *	@param	du		The value of f'(u).
- *	@param	v		The value of another point, v.
- *	@param	fv		The value of f(v).
- *	@param	du		The value of f'(v).
- */
-#define	CUBIC_MINIMIZER(cm, u, fu, du, v, fv, dv) \
-	d = (v) - (u); \
-	theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
-	p = fabs(theta); \
-	q = fabs(du); \
-	r = fabs(dv); \
-	s = max3(p, q, r); \
-	/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
-	a = theta / s; \
-	gamma = s * sqrt(a * a - ((du) / s) * ((dv) / s)); \
-	if ((v) < (u)) gamma = -gamma; \
-	p = gamma - (du) + theta; \
-	q = gamma - (du) + gamma + (dv); \
-	r = p / q; \
-	(cm) = (u) + r * d;
-
-/**
- * Find a minimizer of an interpolated cubic function.
- *	@param	cm		The minimizer of the interpolated cubic.
- *	@param	u		The value of one point, u.
- *	@param	fu		The value of f(u).
- *	@param	du		The value of f'(u).
- *	@param	v		The value of another point, v.
- *	@param	fv		The value of f(v).
- *	@param	du		The value of f'(v).
- *	@param	xmin	The maximum value.
- *	@param	xmin	The minimum value.
- */
-#define	CUBIC_MINIMIZER2(cm, u, fu, du, v, fv, dv, xmin, xmax) \
-	d = (v) - (u); \
-	theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
-	p = fabs(theta); \
-	q = fabs(du); \
-	r = fabs(dv); \
-	s = max3(p, q, r); \
-	/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
-	a = theta / s; \
-	gamma = s * sqrt(max2(0, a * a - ((du) / s) * ((dv) / s))); \
-	if ((u) < (v)) gamma = -gamma; \
-	p = gamma - (dv) + theta; \
-	q = gamma - (dv) + gamma + (du); \
-	r = p / q; \
-	if (r < 0. && gamma != 0.) { \
-		(cm) = (v) - r * d; \
-	} else if (a < 0) { \
-		(cm) = (xmax); \
-	} else { \
-		(cm) = (xmin); \
-	}
-
-/**
- * Find a minimizer of an interpolated quadratic function.
- *	@param	qm		The minimizer of the interpolated quadratic.
- *	@param	u		The value of one point, u.
- *	@param	fu		The value of f(u).
- *	@param	du		The value of f'(u).
- *	@param	v		The value of another point, v.
- *	@param	fv		The value of f(v).
- */
-#define	QUARD_MINIMIZER(qm, u, fu, du, v, fv) \
-	a = (v) - (u); \
-	(qm) = (u) + (du) / (((fu) - (fv)) / a + (du)) / 2 * a;
-
-/**
- * Find a minimizer of an interpolated quadratic function.
- *	@param	qm		The minimizer of the interpolated quadratic.
- *	@param	u		The value of one point, u.
- *	@param	du		The value of f'(u).
- *	@param	v		The value of another point, v.
- *	@param	dv		The value of f'(v).
- */
-#define	QUARD_MINIMIZER2(qm, u, du, v, dv) \
-	a = (u) - (v); \
-	(qm) = (v) + (dv) / ((dv) - (du)) * a;
-
-/**
- * Update a safeguarded trial value and interval for line search.
- *
- *	The parameter x represents the step with the least function value.
- *	The parameter t represents the current step. This function assumes
- *	that the derivative at the point of x in the direction of the step.
- *	If the bracket is set to true, the minimizer has been bracketed in
- *	an interval of uncertainty with endpoints between x and y.
- *
- *	@param	x		The pointer to the value of one endpoint.
- *	@param	fx		The pointer to the value of f(x).
- *	@param	dx		The pointer to the value of f'(x).
- *	@param	y		The pointer to the value of another endpoint.
- *	@param	fy		The pointer to the value of f(y).
- *	@param	dy		The pointer to the value of f'(y).
- *	@param	t		The pointer to the value of the trial value, t.
- *	@param	ft		The pointer to the value of f(t).
- *	@param	dt		The pointer to the value of f'(t).
- *	@param	tmin	The minimum value for the trial value, t.
- *	@param	tmax	The maximum value for the trial value, t.
- *	@param	brackt	The pointer to the predicate if the trial value is
- *					bracketed.
- *	@retval	int		Status value. Zero indicates a normal termination.
- *	
- *	@see
- *		Jorge J. More and David J. Thuente. Line search algorithm with
- *		guaranteed sufficient decrease. ACM Transactions on Mathematical
- *		Software (TOMS), Vol 20, No 3, pp. 286-307, 1994.
- */
-static int update_trial_interval(
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *fx,
-	lbfgsfloatval_t *dx,
-	lbfgsfloatval_t *y,
-	lbfgsfloatval_t *fy,
-	lbfgsfloatval_t *dy,
-	lbfgsfloatval_t *t,
-	lbfgsfloatval_t *ft,
-	lbfgsfloatval_t *dt,
-	const lbfgsfloatval_t tmin,
-	const lbfgsfloatval_t tmax,
-	int *brackt
-	)
-{
-	int bound;
-	int dsign = fsigndiff(dt, dx);
-	lbfgsfloatval_t mc;	/* minimizer of an interpolated cubic. */
-	lbfgsfloatval_t mq;	/* minimizer of an interpolated quadratic. */
-	lbfgsfloatval_t newt;	/* new trial value. */
-	USES_MINIMIZER;		/* for CUBIC_MINIMIZER and QUARD_MINIMIZER. */
-
-	/* Check the input parameters for errors. */
-	if (*brackt) {
-		if (*t <= min2(*x, *y) || max2(*x, *y) <= *t) {
-			/* The trival value t is out of the interval. */
-			return LBFGSERR_OUTOFINTERVAL;
-		}
-		if (0. <= *dx * (*t - *x)) {
-			/* The function must decrease from x. */
-			return LBFGSERR_INCREASEGRADIENT;
-		}
-		if (tmax < tmin) {
-			/* Incorrect tmin and tmax specified. */
-			return LBFGSERR_INCORRECT_TMINMAX;
-		}
-	}
-
-	/*
-		Trial value selection.
-	 */
-	if (*fx < *ft) {
-		/*
-			Case 1: a higher function value.
-			The minimum is brackt. If the cubic minimizer is closer
-			to x than the quadratic one, the cubic one is taken, else
-			the average of the minimizers is taken.
-		 */
-		*brackt = 1;
-		bound = 1;
-		CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
-		QUARD_MINIMIZER(mq, *x, *fx, *dx, *t, *ft);
-		if (fabs(mc - *x) < fabs(mq - *x)) {
-			newt = mc;
-		} else {
-			newt = mc + 0.5 * (mq - mc);
-		}
-	} else if (dsign) {
-		/*
-			Case 2: a lower function value and derivatives of
-			opposite sign. The minimum is brackt. If the cubic
-			minimizer is closer to x than the quadratic (secant) one,
-			the cubic one is taken, else the quadratic one is taken.
-		 */
-		*brackt = 1;
-		bound = 0;
-		CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
-		QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
-		if (fabs(mc - *t) > fabs(mq - *t)) {
-			newt = mc;
-		} else {
-			newt = mq;
-		}
-	} else if (fabs(*dt) < fabs(*dx)) {
-		/*
-			Case 3: a lower function value, derivatives of the
-			same sign, and the magnitude of the derivative decreases.
-			The cubic minimizer is only used if the cubic tends to
-			infinity in the direction of the minimizer or if the minimum
-			of the cubic is beyond t. Otherwise the cubic minimizer is
-			defined to be either tmin or tmax. The quadratic (secant)
-			minimizer is also computed and if the minimum is brackt
-			then the the minimizer closest to x is taken, else the one
-			farthest away is taken.
-		 */
-		bound = 1;
-		CUBIC_MINIMIZER2(mc, *x, *fx, *dx, *t, *ft, *dt, tmin, tmax);
-		QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
-		if (*brackt) {
-			if (fabs(*t - mc) < fabs(*t - mq)) {
-				newt = mc;
-			} else {
-				newt = mq;
-			}
-		} else {
-			if (fabs(*t - mc) > fabs(*t - mq)) {
-				newt = mc;
-			} else {
-				newt = mq;
-			}
-		}
-	} else {
-		/*
-			Case 4: a lower function value, derivatives of the
-			same sign, and the magnitude of the derivative does
-			not decrease. If the minimum is not brackt, the step
-			is either tmin or tmax, else the cubic minimizer is taken.
-		 */
-		bound = 0;
-		if (*brackt) {
-			CUBIC_MINIMIZER(newt, *t, *ft, *dt, *y, *fy, *dy);
-		} else if (*x < *t) {
-			newt = tmax;
-		} else {
-			newt = tmin;
-		}
-	}
-
-	/*
-		Update the interval of uncertainty. This update does not
-		depend on the new step or the case analysis above.
-
-		- Case a: if f(x) < f(t),
-			x <- x, y <- t.
-		- Case b: if f(t) <= f(x) && f'(t)*f'(x) > 0,
-			x <- t, y <- y.
-		- Case c: if f(t) <= f(x) && f'(t)*f'(x) < 0, 
-			x <- t, y <- x.
-	 */
-	if (*fx < *ft) {
-		/* Case a */
-		*y = *t;
-		*fy = *ft;
-		*dy = *dt;
-	} else {
-		/* Case c */
-		if (dsign) {
-			*y = *x;
-			*fy = *fx;
-			*dy = *dx;
-		}
-		/* Cases b and c */
-		*x = *t;
-		*fx = *ft;
-		*dx = *dt;
-	}
-
-	/* Clip the new trial value in [tmin, tmax]. */
-	if (tmax < newt) newt = tmax;
-	if (newt < tmin) newt = tmin;
-
-	/*
-		Redefine the new trial value if it is close to the upper bound
-		of the interval.
-	 */
-	if (*brackt && bound) {
-		mq = *x + 0.66 * (*y - *x);
-		if (*x < *y) {
-			if (mq < newt) newt = mq;
-		} else {
-			if (newt < mq) newt = mq;
-		}
-	}
-
-	/* Return the new trial value. */
-	*t = newt;
-	return 0;
-}
diff --git a/lbfgs.h b/lbfgs.h
deleted file mode 100644
index 75ef571..0000000
--- a/lbfgs.h
+++ /dev/null
@@ -1,508 +0,0 @@
-/*
- *      C library of Limited memory BFGS (L-BFGS).
- *
- * Copyright (c) 1990, Jorge Nocedal
- * Copyright (c) 2007, Naoaki Okazaki
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
-/* $Id: lbfgs.h 58 2007-12-16 09:25:33Z naoaki $ */
-
-#ifndef	__LBFGS_H__
-#define	__LBFGS_H__
-
-#ifdef	__cplusplus
-extern "C" {
-#endif/*__cplusplus*/
-
-/*
- * The default precision of floating point values is 64bit (double).
- */
-#ifndef	LBFGS_FLOAT
-#define	LBFGS_FLOAT		64
-#endif/*LBFGS_FLOAT*/
-
-/*
- * Activate optimization routines for IEEE754 floating point values.
- */
-#ifndef	LBFGS_IEEE_FLOAT
-#define	LBFGS_IEEE_FLOAT	1
-#endif/*LBFGS_IEEE_FLOAT*/
-
-#if		LBFGS_FLOAT == 32
-typedef float lbfgsfloatval_t;
-
-#elif	LBFGS_FLOAT == 64
-typedef double lbfgsfloatval_t;
-
-#else
-#error "liblbfgs supports single (float; LBFGS_FLOAT = 32) or double (double; LBFGS_FLOAT=64) precision only."
-
-#endif
-
-
-/** 
- * \addtogroup liblbfgs_api libLBFGS API
- * @{
- *
- *	The libLBFGS API.
- */
-
-/**
- * Return values of lbfgs().
- */
-enum {
-	/** False value. */
-	LBFGSFALSE = 0,
-	/** True value. */
-	LBFGSTRUE,
-
-	/** Unknown error. */
-	LBFGSERR_UNKNOWNERROR = -1024,
-	/** Logic error. */
-	LBFGSERR_LOGICERROR,
-	/** Insufficient memory. */
-	LBFGSERR_OUTOFMEMORY,
-	/** The minimization process has been canceled. */
-	LBFGSERR_CANCELED,
-	/** Invalid number of variables specified. */
-	LBFGSERR_INVALID_N,
-	/** Invalid number of variables (for SSE) specified. */
-	LBFGSERR_INVALID_N_SSE,
-	/** Invalid parameter lbfgs_parameter_t::max_step specified. */
-	LBFGSERR_INVALID_MINSTEP,
-	/** Invalid parameter lbfgs_parameter_t::max_step specified. */
-	LBFGSERR_INVALID_MAXSTEP,
-	/** Invalid parameter lbfgs_parameter_t::ftol specified. */
-	LBFGSERR_INVALID_FTOL,
-	/** Invalid parameter lbfgs_parameter_t::gtol specified. */
-	LBFGSERR_INVALID_GTOL,
-	/** Invalid parameter lbfgs_parameter_t::xtol specified. */
-	LBFGSERR_INVALID_XTOL,
-	/** Invalid parameter lbfgs_parameter_t::max_linesearch specified. */
-	LBFGSERR_INVALID_MAXLINESEARCH,
-	/** Invalid parameter lbfgs_parameter_t::orthantwise_c specified. */
-	LBFGSERR_INVALID_ORTHANTWISE,
-	/** The line-search step went out of the interval of uncertainty. */
-	LBFGSERR_OUTOFINTERVAL,
-	/** A logic error occurred; alternatively, the interval of uncertainty
-		became too small. */
-	LBFGSERR_INCORRECT_TMINMAX,
-	/** A rounding error occurred; alternatively, no line-search step
-		satisfies the sufficient decrease and curvature conditions. */
-	LBFGSERR_ROUNDING_ERROR,
-	/** The line-search step became smaller than lbfgs_parameter_t::min_step. */
-	LBFGSERR_MINIMUMSTEP,
-	/** The line-search step became larger than lbfgs_parameter_t::max_step. */
-	LBFGSERR_MAXIMUMSTEP,
-	/** The line-search routine reaches the maximum number of evaluations. */
-	LBFGSERR_MAXIMUMLINESEARCH,
-	/** The algorithm routine reaches the maximum number of iterations. */
-	LBFGSERR_MAXIMUMITERATION,
-	/** Relative width of the interval of uncertainty is at most
-		lbfgs_parameter_t::xtol. */
-	LBFGSERR_WIDTHTOOSMALL,
-	/** A logic error (negative line-search step) occurred. */
-	LBFGSERR_INVALIDPARAMETERS,
-	/** The current search direction increases the objective function value. */
-	LBFGSERR_INCREASEGRADIENT,
-};
-
-/**
- * L-BFGS optimization parameters.
- *	Call lbfgs_parameter_init() function to initialize parameters to the
- *	default values.
- */
-typedef struct {
-	/**
-	 * The number of corrections to approximate the inverse hessian matrix.
-	 *	The L-BFGS routine stores the computation results of previous \ref m
-	 *	iterations to approximate the inverse hessian matrix of the current
-	 *	iteration. This parameter controls the size of the limited memories
-	 *	(corrections). The default value is \c 6. Values less than \c 3 are
-	 *	not recommended. Large values will result in excessive computing time.
-	 */
-	int				m;
-
-	/**
-	 * Epsilon for convergence test.
-	 *	This parameter determines the accuracy with which the solution is to
-	 *	be found. A minimization terminates when
-	 *		||g|| < \ref epsilon * max(1, ||x||),
-	 *	where ||.|| denotes the Euclidean (L2) norm. The default value is
-	 *	\c 1e-5.
-	 */
-	lbfgsfloatval_t	epsilon;
-
-	/**
-	 * The maximum number of iterations.
-	 *	The lbfgs() function terminates an optimization process with
-	 *	::LBFGSERR_MAXIMUMITERATION status code when the iteration count
-	 *	exceedes this parameter. Setting this parameter to zero continues an
-	 *	optimization process until a convergence or error. The default value
-	 *	is \c 0.
-	 */
-	int				max_iterations;
-
-	/**
-	 * The maximum number of trials for the line search.
-	 *	This parameter controls the number of function and gradients evaluations
-	 *	per iteration for the line search routine. The default value is \c 20.
-	 */
-	int				max_linesearch;
-
-	/**
-	 * The minimum step of the line search routine.
-	 *	The default value is \c 1e-20. This value need not be modified unless
-	 *	the exponents are too large for the machine being used, or unless the
-	 *	problem is extremely badly scaled (in which case the exponents should
-	 *	be increased).
-	 */
-	lbfgsfloatval_t	min_step;
-
-	/**
-	 * The maximum step of the line search.
-	 *	The default value is \c 1e+20. This value need not be modified unless
-	 *	the exponents are too large for the machine being used, or unless the
-	 *	problem is extremely badly scaled (in which case the exponents should
-	 *	be increased).
-	 */
-	lbfgsfloatval_t	max_step;
-
-	/**
-	 * A parameter to control the accuracy of the line search routine.
-	 *	The default value is \c 1e-4. This parameter should be greater
-	 *	than zero and smaller than \c 0.5.
-	 */
-	lbfgsfloatval_t	ftol;
-
-	/**
-	 * A parameter to control the accuracy of the line search routine.
-	 *	The default value is \c 0.9. If the function and gradient
-	 *	evaluations are inexpensive with respect to the cost of the
-	 *	iteration (which is sometimes the case when solving very large
-	 *	problems) it may be advantageous to set this parameter to a small
-	 *	value. A typical small value is \c 0.1. This parameter shuold be
-	 *	greater than the \ref ftol parameter (\c 1e-4) and smaller than
-	 *	\c 1.0.
-	 */
-	lbfgsfloatval_t	gtol;
-
-	/**
-	 * The machine precision for floating-point values.
-	 *	This parameter must be a positive value set by a client program to
-	 *	estimate the machine precision. The line search routine will terminate
-	 *	with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width
-	 *	of the interval of uncertainty is less than this parameter.
-	 */
-	lbfgsfloatval_t	xtol;
-
-	/**
-	 * Coeefficient for the L1 norm of variables.
-	 *	This parameter should be set to zero for standard minimization
-	 *	problems. Setting this parameter to a positive value minimizes the
-	 *	objective function F(x) combined with the L1 norm |x| of the variables,
-	 *	{F(x) + C |x|}. This parameter is the coeefficient for the |x|, i.e.,
-	 *	C. As the L1 norm |x| is not differentiable at zero, the library
-	 *	modify function and gradient evaluations from a client program
-	 *	suitably; a client program thus have only to return the function value
-	 *	F(x) and gradients G(x) as usual. The default value is zero.
-	 */
-	lbfgsfloatval_t	orthantwise_c;
-} lbfgs_parameter_t;
-
-
-/**
- * Callback interface to provide objective function and gradient evaluations.
- *
- *	The lbfgs() function call this function to obtain the values of objective
- *	function and its gradients when needed. A client program must implement
- *	this function to evaluate the values of the objective function and its
- *	gradients, given current values of variables.
- *	
- *	@param	instance	The user data sent for lbfgs() function by the client.
- *	@param	x			The current values of variables.
- *	@param	g			The gradient vector. The callback function must compute
- *						the gradient values for the current variables.
- *	@param	n			The number of variables.
- *	@param	step		The current step of the line search routine.
- *	@retval	lbfgsfloatval_t	The value of the objective function for the current
- *							variables.
- */
-typedef lbfgsfloatval_t (*lbfgs_evaluate_t)(
-	void *instance,
-	const lbfgsfloatval_t *x,
-	lbfgsfloatval_t *g,
-	const int n,
-	const lbfgsfloatval_t step
-	);
-
-/**
- * Callback interface to receive the progress of the optimization process.
- *
- *	The lbfgs() function call this function for each iteration. Implementing
- *	this function, a client program can store or display the current progress
- *	of the optimization process.
- *
- *	@param	instance	The user data sent for lbfgs() function by the client.
- *	@param	x			The current values of variables.
- *	@param	g			The current gradient values of variables.
- *	@param	fx			The current value of the objective function.
- *	@param	xnorm		The Euclidean norm of the variables.
- *	@param	gnorm		The Euclidean norm of the gradients.
- *	@param	step		The line-search step used for this iteration.
- *	@param	n			The number of variables.
- *	@param	k			The iteration count.
- *	@param	ls			The number of evaluations called for this iteration.
- *	@retval	int			Zero to continue the optimization process. Returning a
- *						non-zero value will cancel the optimization process.
- */
-typedef int (*lbfgs_progress_t)(
-	void *instance,
-	const lbfgsfloatval_t *x,
-	const lbfgsfloatval_t *g,
-	const lbfgsfloatval_t fx,
-	const lbfgsfloatval_t xnorm,
-	const lbfgsfloatval_t gnorm,
-	const lbfgsfloatval_t step,
-	int n,
-	int k,
-	int ls
-	);
-
-/*
-A user must implement a function compatible with ::lbfgs_evaluate_t (evaluation
-callback) and pass the pointer to the callback function to lbfgs() arguments.
-Similarly, a user can implement a function compatible with ::lbfgs_progress_t
-(progress callback) to obtain the current progress (e.g., variables, function
-value, ||G||, etc) and to cancel the iteration process if necessary.
-Implementation of a progress callback is optional: a user can pass \c NULL if
-progress notification is not necessary.
-
-In addition, a user must preserve two requirements:
-	- The number of variables must be multiples of 16 (this is not 4).
-	- The memory block of variable array ::x must be aligned to 16.
-
-This algorithm terminates an optimization
-when:
-
-	||G|| < \epsilon \cdot \max(1, ||x||) .
-
-In this formula, ||.|| denotes the Euclidean norm.
-*/
-
-/**
- * Start a L-BFGS optimization.
- *
- *	@param	n			The number of variables.
- *	@param	x			The array of variables. A client program can set
- *						default values for the optimization and receive the
- *						optimization result through this array.
- *	@param	ptr_fx		The pointer to the variable that receives the final
- *						value of the objective function for the variables.
- *						This argument can be set to \c NULL if the final
- *						value of the objective function is unnecessary.
- *	@param	proc_evaluate	The callback function to provide function and
- *							gradient evaluations given a current values of
- *							variables. A client program must implement a
- *							callback function compatible with \ref
- *							lbfgs_evaluate_t and pass the pointer to the
- *							callback function.
- *	@param	proc_progress	The callback function to receive the progress
- *							(the number of iterations, the current value of
- *							the objective function) of the minimization
- *							process. This argument can be set to \c NULL if
- *							a progress report is unnecessary.
- *	@param	instance	A user data for the client program. The callback
- *						functions will receive the value of this argument.
- *	@param	param		The pointer to a structure representing parameters for
- *						L-BFGS optimization. A client program can set this
- *						parameter to \c NULL to use the default parameters.
- *						Call lbfgs_parameter_init() function to fill a
- *						structure with the default values.
- *	@retval	int			The status code. This function returns zero if the
- *						minimization process terminates without an error. A
- *						non-zero value indicates an error.
- */
-int lbfgs(
-	const int n,
-	lbfgsfloatval_t *x,
-	lbfgsfloatval_t *ptr_fx,
-	lbfgs_evaluate_t proc_evaluate,
-	lbfgs_progress_t proc_progress,
-	void *instance,
-	lbfgs_parameter_t *param
-	);
-
-/**
- * Initialize L-BFGS parameters to the default values.
- *
- *	Call this function to fill a parameter structure with the default values
- *	and overwrite parameter values if necessary.
- *
- *	@param	param		The pointer to the parameter structure.
- */
-void lbfgs_parameter_init(lbfgs_parameter_t *param);
-
-/** @} */
-
-#ifdef	__cplusplus
-}
-#endif/*__cplusplus*/
-
-
-
-/**
-@mainpage C port of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
-
-@section intro Introduction
-
-This library is a C port of the implementation of Limited-memory
-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
-The original FORTRAN source code is available at:
-http://www.ece.northwestern.edu/~nocedal/lbfgs.html
-
-The L-BFGS method solves the unconstrainted minimization problem,
-
-<pre>
-    minimize F(x), x = (x1, x2, ..., xN),
-</pre>
-
-only if the objective function F(x) and its gradient G(x) are computable. The
-Newton's method, which is a well-known algorithm for the optimization,
-requires computation or approximation of the inverse of the hessian matrix of
-the objective function in order to find the point where the gradient G(X) = 0.
-The computational cost for the inverse hessian matrix is expensive especially
-when the objective function takes a large number of variables. The L-BFGS
-method approximates the inverse hessian matrix efficiently by using information
-from last m iterations. This innovation saves the memory storage and
-computational time a lot for large-scaled problems.
-
-Among the various ports of L-BFGS, this library provides several features:
-- <b>Optimization with L1-norm (orthant-wise L-BFGS)</b>:
-  In addition to standard minimization problems, the library can minimize
-  a function F(x) combined with L1-norm |x| of the variables,
-  {F(x) + C |x|}, where C is a constant scalar parameter. This feature is
-  useful for estimating parameters of log-linear models with L1-regularization.
-- <b>Clean C code</b>:
-  Unlike C codes generated automatically by f2c (Fortran 77 into C converter),
-  this port includes changes based on my interpretations, improvements,
-  optimizations, and clean-ups so that the ported code would be well-suited
-  for a C code. In addition to comments inherited from the original code,
-  a number of comments were added through my interpretations.
-- <b>Callback interface</b>:
-  The library receives function and gradient values via a callback interface.
-  The library also notifies the progress of the optimization by invoking a
-  callback function. In the original implementation, a user had to set
-  function and gradient values every time the function returns for obtaining
-  updated values.
-- <b>Thread safe</b>:
-  The library is thread-safe, which is the secondary gain from the callback
-  interface.
-- <b>Cross platform.</b> The source code can be compiled on Microsoft Visual
-  Studio 2005, GNU C Compiler (gcc), etc.
-- <b>Configurable precision</b>: A user can choose single-precision (float)
-  or double-precision (double) accuracy by changing ::LBFGS_FLOAT macro.
-- <b>SSE/SSE2 optimization</b>:
-  This library includes SSE/SSE2 optimization (written in compiler intrinsics)
-  for vector arithmetic operations on Intel/AMD processors. The library uses
-  SSE for float values and SSE2 for double values. The SSE/SSE2 optimization
-  routine is disabled by default; compile the library with __SSE__ symbol
-  defined to activate the optimization routine.
-
-This library is used by the 
-<a href="http://www.chokkan.org/software/crfsuite/">CRFsuite</a> project.
-
-@section download Download
-
-- <a href="http://www.chokkan.org/software/dist/liblbfgs-1.3.tar.gz">Source code</a>
-
-libLBFGS is distributed under the term of the
-<a href="http://opensource.org/licenses/mit-license.php">MIT license</a>.
-
-@section changelog History
-- Version 1.3 (2007-12-16):
-	- An API change. An argument was added to lbfgs() function to receive the
-	  final value of the objective function. This argument can be set to
-	  \c NULL if the final value is unnecessary.
-	- Fixed a null-pointer bug in the sample code (reported by Takashi Imamichi).
-	- Added build scripts for Microsoft Visual Studio 2005 and GCC.
-	- Added README file.
-- Version 1.2 (2007-12-13):
-	- Fixed a serious bug in orthant-wise L-BFGS.
-	  An important variable was used without initialization.
-- Version 1.1 (2007-12-01):
-	- Implemented orthant-wise L-BFGS.
-	- Implemented lbfgs_parameter_init() function.
-	- Fixed several bugs.
-	- API documentation.
-- Version 1.0 (2007-09-20):
-	- Initial release.
-
-@section api Documentation
-
-- @ref liblbfgs_api "libLBFGS API"
-
-@section sample Sample code
-
-@include main.c
-
-@section ack Acknowledgements
-
-The L-BFGS algorithm is described in:
-	- Jorge Nocedal.
-	  Updating Quasi-Newton Matrices with Limited Storage.
-	  <i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
-	- Dong C. Liu and Jorge Nocedal.
-	  On the limited memory BFGS method for large scale optimization.
-	  <i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.
-
-The line search algorithms used in this implementation are described in:
-	- John E. Dennis and Robert B. Schnabel.
-	  <i>Numerical Methods for Unconstrained Optimization and Nonlinear
-	  Equations</i>, Englewood Cliffs, 1983.
-	- Jorge J. More and David J. Thuente.
-	  Line search algorithm with guaranteed sufficient decrease.
-	  <i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
-	  pp. 286-307, 1994.
-
-This library also implements Orthant-Wise Limited-memory Quasi-Newton (OW-LQN)
-method presented in:
-	- Galen Andrew and Jianfeng Gao.
-	  Scalable training of L1-regularized log-linear models.
-	  In <i>Proceedings of the 24th International Conference on Machine
-	  Learning (ICML 2007)</i>, pp. 33-40, 2007.
-
-Finally I would like to thank the original author, Jorge Nocedal, who has been
-distributing the effieicnt and explanatory implementation in an open source
-licence.
-
-@section reference Reference
-
-- <a href="http://www.ece.northwestern.edu/~nocedal/lbfgs.html">L-BFGS</a> by Jorge Nocedal.
-- <a href="http://research.microsoft.com/research/downloads/Details/3f1840b2-dbb3-45e5-91b0-5ecd94bb73cf/Details.aspx">OWL-QN</a> by Galen Andrew.
-- <a href="http://chasen.org/~taku/software/misc/lbfgs/">C port (via f2c)</a> by Taku Kudo.
-- <a href="http://www.alglib.net/optimization/lbfgs.php">C#/C++/Delphi/VisualBasic6 port</a> in ALGLIB.
-- <a href="http://cctbx.sourceforge.net/">Computational Crystallography Toolbox</a> includes
-  <a href="http://cctbx.sourceforge.net/current_cvs/c_plus_plus/namespacescitbx_1_1lbfgs.html">scitbx::lbfgs</a>.
-*/
-
-#endif/*__LBFGS_H__*/
diff --git a/t/01-parameter.t b/t/01-parameter.t
index 6cb3a77..73b58fa 100644
--- a/t/01-parameter.t
+++ b/t/01-parameter.t
@@ -50,7 +50,7 @@ is_deeply
 [
     6,
     0,
-    20
+    40
 ],
 $__;