File: Loops.pm

package info (click to toggle)
libalgorithm-loops-perl 1.032-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 208 kB
  • sloc: perl: 455; makefile: 2
file content (1556 lines) | stat: -rw-r--r-- 41,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
package Algorithm::Loops;
# The command "perldoc Algorithm::Loops" will show you the
# documentation for this module.  You can also seach for
# "=head" below to read the unformatted documentation.

use strict;
BEGIN {     # Some still don't have warnings.pm:
    if(  eval { require warnings }  ) {
        warnings->import();
        if(  eval { require warnings::register; }  ) {
            warnings::register->import();
        }
    } else {
        # $^W= 1;
    }
}

require Exporter;
use vars qw( $VERSION @EXPORT_OK );
BEGIN {
    $VERSION= 1.032_00;
    @EXPORT_OK= qw(
        Filter
        MapCar MapCarE MapCarU MapCarMin
        NestedLoops
        NextPermute NextPermuteNum
    );
    { my @nowarn= ( *import, *isa ) }
    *import= \&Exporter::import;
    *isa= \&UNIVERSAL::isa;
}


sub _Type
{
    my( $val )= @_;
    return  ! defined($val) ? "undef" : ref($val) || $val;
}


sub _Croak
{
    my $depth= 1;
    my $sub;
    do {
        ( $sub= (caller($depth++))[3] ) =~ s/.*:://;
    } while(  $sub =~ /^_/  );
    if(   eval { require Carp; 1; }
      &&  defined &Carp::croak  ) {
        unshift @_, "$sub: ";
        goto &Carp::croak;
    }
    die "$sub: ", @_, ".\n";
}


sub Filter(&@)
{
    my( $code, @vals )= @_;
    isa($code,"CODE")  or  _Croak(
        "No code reference given" );
    # local( $_ ); # Done by the loop.
    for(  @vals  ) {
        $code->();
    }
    wantarray ? @vals : join "", @vals;
}


sub MapCarE(&@)
{
    my $sub= shift(@_);
    isa($sub,"CODE")  or  _Croak(
        "No code reference given" );
    my $size= -1;
    for my $av (  @_  ) {
        isa( $av, "ARRAY" )  or  _Croak(
            "Not an array reference (", _Type($av), ")" );
        if(  $size < 0  ) {
            $size= @$av;
        } elsif(  $size != @$av  ) {
            _Croak( "Arrays with different sizes",
                " ($size and ", 0+@$av, ")" );
        }
    }
    my @ret;
    for(  my $i= 0;  $i < $size;  $i++  ) {
        push @ret, &$sub( map { $_->[$i] } @_ );
    }
    return wantarray ? @ret : \@ret;
}


sub MapCarMin(&@)
{
    my $sub= shift(@_);
    isa($sub,"CODE")  or  _Croak(
        "No code reference given" );
    my $min= -1;
    for my $av (  @_  ) {
        isa( $av, "ARRAY" )  or  _Croak(
            "Not an array reference (", _Type($av), ")" );
        $min= @$av   if  $min < 0  ||  @$av < $min;
    }
    my @ret;
    for(  my $i= 0;  $i < $min;  $i++  ) {
        push @ret, &$sub( map { $_->[$i] } @_ );
    }
    return wantarray ? @ret : \@ret;
}


sub MapCarU(&@)
{
    my $sub= shift(@_);
    isa($sub,"CODE")  or  _Croak(
        "No code reference given" );
    my $max= 0;
    for my $av (  @_  ) {
        isa( $av, "ARRAY" )  or  _Croak(
            "Not an array reference (", _Type($av), ")" );
        $max= @$av   if  $max < @$av;
    }
    my @ret;
    for(  my $i= 0;  $i < $max;  $i++  ) {
        push @ret, &$sub( map { $_->[$i] } @_ );
    }
    return wantarray ? @ret : \@ret;
}


sub MapCar(&@)
{
    my $sub= shift(@_);
    isa($sub,"CODE")  or  _Croak(
        "No code reference given" );
    my $max= 0;
    for my $av (  @_  ) {
        isa( $av, "ARRAY" )  or  _Croak(
            "Not an array reference (", _Type($av), ")" );
        $max= @$av   if  $max < @$av;
    }
    my @ret;
    for(  my $i= 0;  $i < $max;  $i++  ) {
        push @ret, &$sub( map { $i < @$_ ? $_->[$i] : () } @_ );
        # If we assumed Want.pm, we could consider an early return.
    }
    return wantarray ? @ret : \@ret;
}


sub NextPermute(\@)
{
    my( $vals )= @_;
    my $last= $#{$vals};
    return !1   if  $last < 1;
    # Find last item not in reverse-sorted order:
    my $i= $last-1;
    $i--   while  0 <= $i  &&  $vals->[$i] ge $vals->[$i+1];
    # If complete reverse sort, we are done!
    if(  -1 == $i  ) {
        # Reset to starting/sorted order:
        @$vals= reverse @$vals;
        return !1;
    }
    # Re-sort the reversely-sorted tail of the list:
    @{$vals}[$i+1..$last]= reverse @{$vals}[$i+1..$last]
        if  $vals->[$i+1] gt $vals->[$last];
    # Find next item that will make us "greater":
    my $j= $i+1;
    $j++  while  $vals->[$i] ge $vals->[$j];
    # Swap:
    @{$vals}[$i,$j]= @{$vals}[$j,$i];
    return 1;
}


sub NextPermuteNum(\@)
{
    my( $vals )= @_;
    my $last= $#{$vals};
    return !1   if  $last < 1;
    # Find last item not in reverse-sorted order:
    my $i= $last-1;
    $i--   while  0 <= $i  &&  $vals->[$i+1] <= $vals->[$i];
    # If complete reverse sort, we are done!
    if(  -1 == $i  ) {
        # Reset to starting/sorted order:
        @$vals= reverse @$vals;
        return !1;
    }
    # Re-sort the reversely-sorted tail of the list:
    @{$vals}[$i+1..$last]= reverse @{$vals}[$i+1..$last]
        if  $vals->[$last] < $vals->[$i+1];
    # Find next item that will make us "greater":
    my $j= $i+1;
    $j++  while  $vals->[$j] <= $vals->[$i];
    # Swap:
    @{$vals}[$i,$j]= @{$vals}[$j,$i];
    return 1;
}


sub _NL_Args
{
    my $loops= shift(@_);
    isa( $loops, "ARRAY" )  or  _Croak(
        "First argument must be an array reference,",
        " not ", _Type($loops) );

    my $n= 1;
    for my $loop (  @$loops  ) {
        if(  ! isa( $loop, "ARRAY" )
         &&  ! isa( $loop, "CODE" )  ) {
            _Croak( "Invalid type for loop $n specification (",
                _Type($loop), ")" );
        }
        $n++;
    }

    my( $opts )= @_;
    if(  isa( $opts, "HASH" )  ) {
        shift @_;
    } else {
        $opts= {};
    }

    my $code;
    if(  0 == @_  ) {
        $code= 0;
    } elsif(  1 != @_  ) {
        _Croak( "Too many arguments" );
    } else {
        $code= pop @_;
        isa($code,"CODE")  or  _Croak(
            "Expected CODE reference not ", _Type($code) );
    }

    my $when= delete($opts->{OnlyWhen})
        ||  sub { @_ == @$loops };
    if(  keys %$opts  ) {
        _Croak( "Unrecognized option(s): ",
            join ' ', keys %$opts );
    }

    return( $loops, $code, $when );
}

sub _NL_Iter
{
    my( $loops, $code, $when )= @_;

    my @list;
    my $i= -1;
    my @idx;
    my @vals= @$loops;

    return  sub { return }
        if  ! @vals;

    return  sub {
        while( 1 ) {
            # Prepare to append one more value:
            if(  $i < $#$loops  ) {
                $idx[++$i]= -1;
                if(  isa( $loops->[$i], 'CODE' )  ) {
                    local( $_ )= $list[-1];
                    $vals[$i]= $loops->[$i]->(@list);
                }
            }
            ## return   if  $i < 0;
            # Increment furthest value, chopping if done there:
            while(  @{$vals[$i]} <= ++$idx[$i]  ) {
                pop @list;
                return   if  --$i < 0;
            }
            $list[$i]= $vals[$i][$idx[$i]];
            my $act;
            $act= !ref($when) ? $when : do {
                local( $_ )= $list[-1];
                $when->(@list);
            };
            return @list   if  $act;
        }
    };

}

sub NestedLoops
{
    my( $loops, $code, $when )= _NL_Args( @_ );

    my $iter= _NL_Iter( $loops, $code, $when );

    if(  ! $code  ) {
        if(  ! defined wantarray  ) {
            _Croak( "Useless in void context",
                " when no code given" );
        }
        return $iter;
    }

    my @ret;
    my @list;
    while(  @list= $iter->()   ) {
        @list= $code->( @list );
        if(  wantarray  ) {
            push @ret, @list;
        } else {
            $ret[0] += @list;
        }
    }
    return wantarray ? @ret : ( $ret[0] || 0 );
}


"Filtering should not be straining";
__END__

=head1 NAME

Algorithm::Loops - Looping constructs:
NestedLoops, MapCar*, Filter, and NextPermute*

=head1 SYNOPSYS

    use Algorithm::Loops qw(
        Filter
        MapCar MapCarU MapCarE MapCarMin
        NextPermute NextPermuteNum
        NestedLoops
    );

    my @copy= Filter {tr/A-Z'.,"()/a-z/d} @list;
    my $string= Filter {s/\s*$/ /} @lines;

    my @transposed= MapCarU {[@_]} @matrix;

    my @list= sort getList();
    do {
        usePermutation( @list );
    } while(  NextPermute( @list )  );

    my $len= @ARGV ? $ARGV[0] : 3;
    my @list= NestedLoops(
        [  ( [ 1..$len ] ) x $len  ],
        sub { "@_" },
    );

If you want working sample code to try, see below in the section specific
to the function(s) you want to try.  The above samples only give a
I<feel> for how the functions are typically used.

=head1 FUNCTIONS

Algorithm::Loops provides the functions listed below.  By default, no
functions are exported into your namespace (package / symbol table) in
order to encourage you to list any functions that you use in the C<use
Algorithm::Loops> statement so that whoever ends up maintaining your code
can figure out which module you got these functions from.

=over 4

=item Filter

Similar to C<map> but designed for use with s/// and other reflexive
operations.  Returns a modified copy of a list.

=item MapCar, MapCarU, MapCarE, and MapCarMin

All similar to C<map> but loop over multiple lists at the same time.

=item NextPermute and NextPermuteNum

Efficiently find all (unique) permutations of a list, even if it contains
duplicate values.

=item NestedLoops

Simulate C<foreach> loops nested arbitrarily deep.

=back

=head2 Filter(\&@)

=head3 Overview

Produces a modified copy of a list of values.  Ideal for use with s///.
If you find yourself trying to use s/// or tr/// inside of map (or grep),
then you should probably use Filter instead.

For example:

    use Algorithm::Loops qw( Filter );

    @copy = Filter { s/\\(.)/$1/g } @list;
    $text = Filter { s/^\s+// } @lines;

The same process can be accomplished using a careful and more complex
invocation of map, grep, or foreach.  However, many incorrect ways to
attempt this seem rather seductively appropriate so this function helps
to discourage such (rather common) mistakes.

=head3 Usage

Filter has a prototype specification of (\&@).

This means that it demands that the first argument that you pass to it be
a CODE reference.  After that you can pass a list of as many or as few
values as you like.

For each value in the passed-in list, a copy of the value is placed into
$_ and then your CODE reference is called.  Your subroutine is expected
to modify $_ and this modified value is then placed into the list of
values to be returned by Filter.

If used in a scalar context, Filter returns a single string that is the
result of:

    $string= join "", @results;

Note that no arguments are passed to your subroutine (so don't bother
with @_) and any value C<return>ed by your subroutine is ignored.

Filter's prototype also means that you can use the "map BLOCK"-like
syntax by leaving off the C<sub> keyword if you also leave off the
comma after the block that defines your anonymous subroutine:

        my @copy= Filter sub {s/\s/_/g}, @list;
  # becomes:            v^^^       v   ^
        my @copy= Filter {s/\s/_/g} @list;

Most of our examples will use this shorter syntax.

Note also that by importing Filter via the C<use> statement:

    use Algorithm::Loops qw( Filter );

it gets declared before the rest of our code is compiled so we don't have
to use parentheses when calling it.  We I<can> if we want to, however:

        my @copy= Filter( sub {s/\s/_/g}, @list );

=head3 Note on "Function BLOCK LIST" bugs

Note that in at least some versions of Perl, support for the "Filter
BLOCK ..." syntax is somewhat fragile.  For example:

    ... Filter( {y/aeiou/UAEIO/} @list );

may give you this error:

    Array found where operator expected

which can be fixed by dropping the parentheses:

    ... Filter {y/aeiou/UAEIO/} @list;

So if you need or want to use parentheses when calling Filter, it is best
to also include the C<sub> keyword and the comma:

    #         v <--------- These ---------> v
    ... Filter( sub {y/aeiou/UAEIO/}, @list );
    # require   ^^^ <--- these ---> ^ (sometimes)

so your code will be portable to more versions of Perl.

=head3 Examples

Good code ignores "invisible" characters.  So
instead of just chomp()ing, consider removing
all trailing whitespace:

    my @lines= Filter { s/\s+$// } <IN>;

or

    my $line= Filter { s/\s+$// } scalar <IN>;

[ Note that Filter can be used in a scalar
context but always puts its arguments in a
list context.  So we need to use C<scalar> or
something similar if we want to read only one
line at a time from C<IN> above. ]

Want to sort strings that contain mixtures of
letters and natural numbers (non-negative
integers) both alphabetically and numerically
at the same time?  This simple way to do a
"natural" sort is also one of the fastest.
Great for sorting version numbers, file names,
etc.:

    my @sorted= Filter {
        s#\d{2}(\d+)#\1#g
    } sort Filter {
        s#(\d+)# sprintf "%02d%s", length($1), $1 #g
    } @data;

[ Note that at least some versions of Perl have a bug that breaks C<sort>
if you write C<sub {> as part of building the list of items to be sorted
but you don't provide a comparison routine.  This bug means we can't
write the previous code as:

    my @sorted= Filter {
        s#\d{2}(\d+)#\1#g
    } sort Filter sub {
        s#(\d+)# sprintf "%02d%s", length($1), $1 #g
    }, @data;

because it will produce the following error:

    Undefined subroutine in sort

in some versions of Perl.  Some versions of Perl may even require you
to write it like this:

    my @sorted= Filter {
        s#\d{2}(\d+)#\1#g
    } sort &Filter( sub {
        s#(\d+)# sprintf "%02d%s", length($1), $1 #g
    }, @data );

Which is how I wrote it in ex/NaturalSort.plx. ]

Need to sort names?  Then you'll probably want to ignore letter case and
certain punctuation marks while still preserving both:

    my @compare= Filter {tr/A-Z'.,"()/a-z/d} @names;
    my @indices= sort {$compare[$a] cmp $compare[$b]} 0..$#names;
    @names= @names[@indices];

You can also roll your own simple HTML templating:

    print Filter {
        s/%(\w*)%/expand($1)/g
    }   $cgi->...,
        ...
        $cgi->...;

Note that it also also works correctly if you change how you output your
    HTML and accidentally switch from list to scalar context:

    my $html= '';
    ...
    $html .= Filter {
        s/%(\w*)%/expand($1)/g
    }   $cgi->...,
        ...
        $cgi->...;

=head3 Motivation

A reasonable use of map is:

    @copy= map {lc} @list;

which sets @copy to be a copy of @list but with all of the elements
converted to lower case.  But it is too easy to think that that could
also be done like this:

    @copy= map {tr/A-Z/a-z/} @list;  # Wrong

The reason why these aren't the same is similar to why we write:

    $str= lc $str;

not

    lc $str;  # Useless use of 'lc' in void context

and we write:

    $str =~ tr/A-Z/a-z/;

not

    $new= ( $old =~ tr/A-Z/a-z/ );  # Wrong

That is, many things (such as lc) return a modified copy of what they are
given, but a few things (such as tr///, s///, chop, and chomp) modify
what they are given I<in-place>.

This distinction is so common that we have several ways of switching
between the two forms.  For example:

        $two= $one + $other;
  # vs.
        $one += $other;

or

        $two= substr($one,0,4);
  # vs.
        substr($one,4)= '';

I've even heard talk of adding some syntax to Perl to allow you to make
things like C<lc> become reflexive, similar to how += is the reflexive
form of +.

But while many non-reflexive Perl operations have reflexive counterparts,
there are a few reflexive Perl operations that don't really have
non-reflexive counterparts: s///, tr///, chop, chomp.

You can write:

        my $line= <STDIN>;
        chomp( $line );
  # or
        chomp( my $line= <STDIN> );

but it somehow seems more natural to write:

        my $line= chomp( <STDIN> );  # Wrong

So, if you dislike hiding the variable declaration inside of a function
call or dislike using two lines and repeating the variable name, then you
can now use:

        my $line= Filter {chomp} ''.<STDIN>;

[ I used C<''.> to provide a scalar context so that only one line is read
from STDIN. ]

Or, for a better example, consider these valid alternatives:

        my @lines= <STDIN>;
        chomp( @lines );
  # or
        chomp( my @lines= <STDIN> );

And what you might expect to work (but doesn't):

        my @lines= chomp( <STDIN> );  # Wrong

And what you can now use instead:

        my @lines= Filter {chomp} <STDIN>;

Here are some examples of ways to use map/grep correctly to get Filter's
functionality:

        Filter { CODE } @list
  # vs
        join "", map { local($_)= $_; CODE; $_ } @list
  # vs
        join "", grep { CODE; 1 } @{ [@list] }

Not horribly complex, but enough that it is very easy to forget part of
the solution, making for easy mistakes.  I see mistakes related to this
quite frequently and have made such mistakes myself several times.

Some (including me) would even consider the last form above to be an
abuse (or misuse) of C<grep>.

You can also use C<for>/C<foreach> to get the same results as Filter:

        my @copy= Filter { CODE } @list;
  # vs
        STATEMENT  foreach  my @copy= @list;
  # or
        my @copy= @list;
        foreach(  @copy  ) {
            CODE;
        }

=head2 MapCar*

=over 4

=item MapCar(\&@)

=item MapCarU(\&@)

=item MapCarE(\&@)

=item MapCarMin(\&@)

=back

=head3 Usage

The MapCar* functions are all like C<map> except they each loop over more
than one list at the same time.

[ The name "mapcar" comes from LISP. As I understand it, 'car' comes from
the acronym for a register of the processor where LISP was first
developed, one of two registers used to implement lists in LISP.  I only
mention this so you won't waste too much time trying to figure out what
"mapcar" is supposed to mean. ]

The MapCar* functions all have prototype specifications of (\&@).

This means that they demand that the first argument that you pass be a
CODE reference.  After that you should pass zero or more array references.

Your subroutine is called (in a list context) and is passed the first
element of each of the arrays whose references you passed in (in the
corresponding order).  Any value(s) returned by your subroutine are
pushed onto an array that will eventually be returned by MapCar*.

Next your subroutine is called and is passed the B<second> element of
each of the arrays and any value(s) returned are pushed onto the results
array.  Then the process is repeated with the B<third> elements.

This continues until your subroutine has been passed all elements [except
for some cases with MapCarMin()].  If the longest array whose reference
you passed to MapCar() or MapCarU() contained $N elements, then your
subroutine would get called $N times.

Finally, the MapCar* function returns the accumulated list of values.  If
called in a scalar context, the MapCar* function returns a reference to
an array containing these values.

[ I feel that having C<map> return a count when called in a scalar
context is quite simply a mistake that was made when this feature was
copied from C<grep> without properly considering the consequences.
Although it does make for the impressive and very impractical golf
solution of:

    $sum=map{(1)x$_}@ints;

for adding up a list of natural numbers. q-: ]

=head3 Differences

The different MapCar* functions are only different in how they deal with
being pqssed arrays that are not all of the same size.

If not all of your arrays are the same length, then MapCarU() will pass
in C<undef> for any values corresponding to arrays that didn't have
enough values.  The "U" in "MapCarU" stands for "undef".

In contrast, MapCar() will simply leave out values for short arrays (just
like I left the "U" out of its name).

MapCarE() will croak without ever calling your subroutine unless all of
the arrays are the same length.  It considers it an Error if your arrays
are not of Equal length and so throws an Exception.

Finally, MapCarMin() only calls your subroutine as many times as there
are elements in the B<shortest> array.

In other words,

    MapCarU \&MySub, [1,undef,3], [4,5], [6,7,8]

returns

    ( MySub( 1, 4, 6 ),
      MySub( undef, 5, 7 ),
      MySub( 3, undef, 8 ),
    )

While

    MapCar \&MySub, [1,undef,3], [4,5], [6,7,8]

returns

    ( MySub( 1, 4, 6 ),
      MySub( undef, 5, 7 ),
      MySub( 3, 8 ),
    )

While

    MapCarMin \&MySub, [1,undef,3], [4,5], [6,7,8]

returns

    ( MySub( 1, 4, 6 ),
      MySub( undef, 5, 7 ),
    )

And

    MapCarE \&MySub, [1,undef,3], [4,5], [6,7,8]

dies with

    MapCarE: Arrays with different sizes (3 and 2)

=head3 Examples

Transposing a two-dimensional matrix:

    my @transposed= MapCarE {[@_]} @matrix;

or, using references to the matrices and allowing for different row
lengths:

    my $transposed= MapCarU {[@_]} @$matrix;

Formatting a date-time:

    my $dateTime= join '', MapCarE {
        sprintf "%02d%s", pop()+pop(), pop()
    } [ (localtime)[5,4,3,2,1,0] ],
      [ 1900, 1, (0)x4 ],
      [ '// ::' =~ /./g, '' ];

Same thing but not worrying about warnings for using undefined values:

    my $dateTime= join '', MapCarU {
        sprintf "%02d%s", pop()+pop(), pop()
    } [ (localtime)[5,4,3,2,1,0] ],
      [ 1900, 1 ],
      [ '// ::' =~ /./g ];

Combine with C<map> to do matrix multiplication:

    my @X= (
        [  1,  3 ],
        [  4, -1 ],
        [ -2,  2 ],
    );
    my @Y= (
        [ -6,  2, 5, -3 ],
        [  4, -1, 3,  1 ],
    );
    my @prod= map {
        my $row= $_;
        [
            map {
                my $sum= 0;
                $sum += $_   for  MapCarE {
                    pop() * pop();
                } $row, $_;
                $sum;
            } MapCarE {\@_} @Y;
        ]
    } @X;

Report the top winners:

    MapCarMin {
        print pop(), " place goes to ", pop(), ".\n";
    } [qw( First Second Third Fourth )],
      \@winners;

Same thing (scalar context):

    my $report= MapCarMin {
        pop(), " place goes to ", pop(), ".\n";
    } [qw( First Second Third Fourth )],
      \@winners;

Displaying a duration:

    my $ran= time() - $^T;
    my $desc= join ', ', reverse MapCar {
        my( $unit, $mult )= @_;
        my $part= $ran;
        if(  $mult  ) {
            $part %= $mult;
            $ran= int( $ran / $mult );
        }
        $unit .= 's'   if  1 != $part;
        $part ? "$part $unit" : ();
    } [ qw( sec min hour day week year ) ],
      [     60, 60, 24,   7,  52 ];
    $desc ||= '< 1 sec';
    print "Script ran for $desc.\n";

=head2 NextPermute*

=over 4

=item NextPermute(\@)

=item NextPermuteNum(\@)

=back

=head3 Introduction

If you have a list of values, then a "permutation" of that list is the
same values but not (necessarily) in the same order.

NextPermute() and NextPermuteNum() each provide very efficient ways of
finding all of the (unique) permutations of a list (even if the list
contains duplicate values).

=head3 Usage

Each time you pass an array to a NextPermute* routine, the elements of
the array are shifted around to give you a new permutation.  If the
elements of the array are in reverse-sorted order, then the array is
reversed (in-place, making it sorted) and a false value is returned.
Otherwise a true value is returned.

So, if you start out with a sorted array, then you can use that as your
first permutation and then call NextPermute* to get the next permutation
to use, until NextPermute* returns a false value (at which point your
array has been returned to its original, sorted order).

So you would use NextPermute() like this:

    my @list= sort GetValuesSomehow();
    do {
        DoSomethingWithPermutation( @list );
    } while(  NextPermute( @list )  );

or, if your list only contains numbers, you could use NextPermuteNum()
like this:

    my @list= sort {$a<=>$b} GetNumbersSomehow();
    do {
        DoSomethingWithPermutation( @list );
    } while(  NextPermuteNum( @list )  );

=head3 Notes

The NextPermute* functions each have a prototype specifications of (\@).
This means that they demand that you pass them a single array which they
will receive a reference to.

If you instead have a reference to an array, you'll need to use C<@{ }>
when calling a NextPermute* routine:

    } while(  NextPermute( @{$av} )  );

(or use one of several other techniques which I will leave the
consideration of as an "exercise" for the more advanced readers
of this manual).

Note that this particular use of a function prototype is one that I am
not completely comfortable with.  I am tempted to remove the prototype
and force you to create the reference yourself before/when calling these
functions:

    } while(  NextPermute( \@list )  );   # Wrong

because

=over 4

=item

It makes it obvious to the reader of the code that a reference to the
array is what is being used by the routine.  This makes the reader more
likely to realize/suspect that the array is being modified in-place.

=item

Many/most uses of Perl function prototypes are more trouble than they are
worth.  This makes using even the less problematic cases often not a good
idea.

=back

However, I have decided to use a prototype here because:

=over 4

=item

Several other functions from this module already use prototypes to good
advantage, enough advantage that I'd hate to lose it.

=item

Removing the prototype would require the addition of argument-checking
code that would get run each time a permutation is computed, somewhat
slowing down what is currently quite fast.

=item

The compile-time checking provided by the prototype can save develop time
over a run-time check by pointing out mistakes sooner.

=back

=head3 Features

There are several features to NextPermute* that can be advantages over
other methods of finding permutations.

=over 4

=item Iterators - No huge memory requirements

Some permutation generators return the full set of all permutations (as a
huge list of lists).  Your input list doesn't have to be very big at all
for the resulting set to be too large to fit in your available memory.

So the NextPermute* routines return each permutation, one at a time, so
you can process them all (eventually) without the need for lots of memory.

A programming object that gives you access to things one-at-a-time is
called an "iterator".

=item No context - Hardly any memory required

The NextPermute* routines require no extra memory in the way of context
or lists to keep track of while constructing the permutations.

Each call to a NextPermute* routine shuffles the items in the list
B<in-place>, never making copies of more than a couple of values at a
time (when it swaps them).

[ This also means you don't have to bother with creating an object to do
the iterating. ]

=item Handles duplicate values

Unlike most permutation generators you are likely to find in Perl, both
NextPermute* routines correctly deal with lists containing duplicate
values.

The following example:

    my @list= ( 3, 3, 3, 3 );
    do {
        print "@list\n";
    } while(  NextPermute( @list )  );

will only print the one line, "3 3 3 3\n", because NextPermute() quickly
determines that there are no other unique permutations.

Try out the demonstration program included in the "ex" subdirectory of
the source distribution of this module:

    > perl ex/Permute.plx tool
    1: loot
    2: loto
    3: ltoo
    4: olot
    5: olto
    6: oolt
    7: ootl
    8: otlo
    9: otol
    10: tloo
    11: tolo
    12: tool

Most permutation generators would have listed each of those twice
(thinking that swapping an "o" with another "o" made a new permutation). 
Or consider:

    > perl ex/Permute.plx noon
    1: nnoo
    2: nono
    3: noon
    4: onno
    5: onon
    6: oonn

Most permutation generators would have listed each of those B<four>
times.

Note that using a hash to eliminate duplicates would require a hash table
big enough to hold all of the (unique) permutations and so would defeat
the purpose of iterating.  NextPermute* does not use a hash to avoid
duplicates.

=item Generated in sorted order

If you were to run code like:


    my @list= sort GetValuesSomehow();
    do {
        print join('',@lista, $/);
    } while(  NextPermute( @list )  );

then the lines output would be sorted (assuming none of the values in
@list contained newlines.  This may be convenient in some corcumstances.

That is, the permutations are generated in sorted order.  The first
permutations have the lowest values at the front of the list.  As you
iterate, larger values are shifted to be in front of smaller values,
starting at the back of the list.  So the value at the very front of the
list will change the fewest times (once for each unique value in the
list), while the value at the very end of the list changes between most
iterations.

=item Fast

If you don't have to deal with duplicate values, then Algorithm::Permute
provides some routines written in C (which makes them harder to install
but about twice as fast to run as the NextPermute* routines) that you can
use.

Algorithm::Permute also includes some fun benchmarks comparing different
Perl ways of finding permutations.  I found NextPermute to be faster than
any of the routines included in those benchmarks except for the ones
written in C that I mentioned above.  Though none of the benchmarked
routines deal with duplicates.

=back

=head3 Notes

Note that NextPermute() considers two values (say $x and $y) to be
duplicates if (and only if) C<$x eq $y>.

NextPermuteNum() considers $x and $y to be duplicates if C<$x == $y>.

If you have a list of floating point numbers to permute, you might want
to use NextPermute() [instead of NextPermuteNum()] as it is easy to end
up with $x and $y that both display the same (say as "0.1") but are
B<just barely> not equal numerically.  Thus $x and $y would I<look> equal
and it would be true that C<$x eq $y> but also true that C<$x != $y>.  So
NextPermute() would consider them to be duplicates but NextPermuteNum()
would not.

For example, $x could be slightly more than 1/10, likely about
0.1000000000000000056, while $y is slightly more at about
0.0999999999999999917 (both of which will be displayed as "0.1" by Perl
and be considered C<eq> (on most platforms):

    > perl -w -Mstrict
    my $x= 0.1000000000000000056;
    my $y= 0.0999999999999999917;
    print "x=$x\ny=$y\n";
    print "are eq\n"   if  $x eq $y;
    print "are ==\n"   if  $x == $y;
    print "are !=\n"   if  $x != $y;
    <EOF>
    x=0.1
    y=0.1
    are eq
    are !=

=head2 NestedLoops

=head3 Introduction

Makes it easy to simulate loops nested to an arbitrary depth.

It is easy to write code like:

    for my $a (  0..$N  ) {
     for my $b (  $a+1..$N  ) {
      for my $c (  $b+1..$N  ) {
          Stuff( $a, $b, $c );
      }
     }
    }

But what if you want the user to tell you how many loops to nest
together?  The above code can be replaced with:

    use Algorithm::Loops qw( NestedLoops );

    my $depth= 3;
    NestedLoops(
        [   [ 0..$N ],
            ( sub { [$_+1..$N] } ) x ($depth-1),
        ],
        \&Stuff,
    );

Then you only have to change $depth to 4 to get the same results as:

    for my $a (  0..$N  ) {
     for my $b (  $a+1..$N  ) {
      for my $c (  $b+1..$N  ) {
       for my $d (  $c+1..$N  ) {
          Stuff( $a, $b, $c, $d );
       }
      }
     }
    }

=head3 Usage

The first argument to NestedLoops() is required and must be a reference
to an array.  Each element of the array specifies the values for a single
loop to iterate over.  The first element describes the outermost loop. 
The last element describes the innermost loop.

If the next argument to NestedLoops is a hash reference, then it
specifies more advanced options.  This argument can be omitted if you
don't need it.

If the last argument to NestedLoops is a code reference, then it will be
run inside the simulated loops.  If you don't pass in this code
reference, then NestedLoops returns an iterator (described later) so you
can iterate without the restrictions of using a call-back.

So the possible ways to call NestedLoops are:

    $iter= NestedLoops( \@Loops );
    $iter= NestedLoops( \@Loops, \%Opts );
    ...    NestedLoops( \@Loops, \%Opts, \&Code );
    ...    NestedLoops( \@Loops,         \&Code );

The "..."s above show that, when the final code reference is provided,
NestedLoops can return a few different types of information.

In a void context, NestedLoops simply iterates and calls the provided
code, discarding any values it returns.  (Calling NestedLoops in a void
context without passing a final code reference is a fatal error.)

In a list context, NestedLoops C<push>es the values returned by each call
to \&Code onto an array and then returns (copies of the values from) that
array.

In a scalar contetx, NestedLoops keeps a running total of the number of
values returned by each call to \&Code and then returns this total.  The
value is the same as if you had called NestedLoops in a list context and
counted the number of values returned (except for using less memory).

Note that \&Code is called in a list context no matter what context
NestedLoops was called in (in the current implementation).

In summary:

    NestedLoops( \@loops, \%opts, \&code );
    $count= NestedLoops( \@loops, \%opts, \&code );
    @results= NestedLoops( \@loops, \%opts, \&code );

=head4 \@Loops

Each element of @Loops can be

=over 4

=item an array refernce

which means the loop will iterate over the elements of that array,

=item a code refernce

to a subroutine that will return a reference to the array to loop over.

=back

You don't have to use a reference to a named array.  You can, of course,
construct a reference to an anonymous array using C<[...]>, as shown in
most of the examples.  You can also use any other type of expression that
rerurns an array reference.

=head4 \%Opts

If %Opts is passed in, then it should only zero or more of the following
keys.  How NestedLoops interprets the values associated with each key are
described below.

=over 4

=item OnlyWhen => $Boolean

=item OnlyWhen => \&Test

Value must either be a Boolean value or a reference to a subroutine that
will return a Boolean value.

Specifying a true value is the same as specifying a routine that always
returns a true value.  Specifying a false value gives you the default
behavior (as if you did not include the OnlyWhen key at all).

If it is a code reference, then it is called each time a new item is
selected by any of the loops.  The list of selected items is passed in.

The Boolean value returned says whether to use the list of selected
values.  That is, a true value causes either \&Code to be called (if
specified) or the list to be returned by the iterator (if \&Code was not
specified).

If this key does not exist (or is specified with a false value), then a
default subroutine is used, like:

    sub { return @_ == @Loops }

That is, only complete lists are used (by default).  So:

    my @list= NestedLoops(
        [  ( [ 1..3 ] ) x 3  ],
        {  OnlyWhen => 0  },
        sub { "@_" },
    );

is similar to:

    my @list= qw/ 111 112 113 121 122 123 131 132 133 211 212 ... /;

while

    my @list= NestedLoops(
        [  ( [ 1..3 ] ) x 3  ],
        {  OnlyWhen => 1  },
        sub { "@_" },
    );

is similar to:

    my @list= qw/ 1 11 111 112 113 12 121 122 123
                  13 131 132 133 2 21 211 212 ... /;

Another example:

    NestedLoops(
        [  ( [ 1..3 ] ) x 3  ],
        { OnlyWhen => 1 },
        \&Stuff,
    );

is similar to:

    for my $a (  1..3  ) {
        Stuff( $a );
        for my $b (  1..3  ) {
            Stuff( $a, $b );
            for my $c (  1..3  ) {
                Stuff( $a, $b, $c );
            }
        }
    }

Last example:

    NestedLoops(
        [  ( [ 1..3 ] ) x 3  ],
        { OnlyWhen => \&Test },
        \&Stuff,
    );

is similar to:

    for my $a (  1..3  ) {
        Stuff( $a )   if  Test( $a );
        for my $b (  1..3  ) {
            Stuff( $a, $b )   if  Test( $a, $b );
            for my $c (  1..3  ) {
                Stuff( $a, $b, $c )
                    if  Test( $a, $b, $c );
            }
        }
    }

=back

=head4 \&Code

The subroutine that gets called for each iteration.

=head4 Iterator

If you don't pass in a final code reference to NestedLoops, then
NestedLoops will return an iterator to you (without having performed
any iterations yet).

The iterator is a code reference.  Each time you call it, it returns the
next list of selected values.  Any arguments you pass in are ignored (at
least in this release).

=head3 Examples

=head4 Finding non-repeating sequences of digits.

One way would be to loop over all digit combinations but only selecting
ones without repeats:

    use Algorithm::Loops qw/ NestedLoops /;
    $|= 1;
    my $len= 3;
    my $verbose= 1;
    my $count= NestedLoops(
        [   ( [0..9] ) x $len  ],
        {   OnlyWhen => sub {
                    $len == @_
                &&  join('',@_) !~ /(.).*?\1/;
            #or &&  @_ == keys %{{@_,reverse@_}};
            }
        },
        sub {
            print "@_\n"   if  $verbose;
            return 1;
        },
    );
    print "$count non-repeating $len-digit sequences.\n";

    0 1 2
    0 1 3
    0 1 4
    0 1 5
    0 1 6
    0 1 7
    0 1 8
    0 1 9
    0 2 1
    ...
    9 8 5
    9 8 6
    9 8 7
    720 non-repeating 3-digit sequences.

But it would be nice to not waste time looping over, for example
(2,1,2,0,0) through (2,1,2,9,9).  That is, don't even pick 2 as the
third value if we already picked 2 as the first.

A clever way to do that is to only iterate over lists where the digits
I<increase> from left to right.  That will give us all I<sets> of
non-repeating digits and then we find all permutations of each:

    use Algorithm::Loops qw/ NestedLoops NextPermute /;
    $|= 1;
    my $len= 3;
    my $verbose= 1;
    my $iter= NestedLoops(
        [   [0..9],
            ( sub { [$_+1..9] } ) x ($len-1),
        ],
    );
    my $count= 0;
    my @list;
    while(  @list= $iter->()  ) {
        do {
            ++$count;
            print "@list\n"   if  $verbose;
        } while( NextPermute(@list) );
    }
    print "$count non-repeating $len-digit sequences.\n";

    0 1 2
    0 2 1
    1 0 2
    1 2 0
    2 0 1
    2 1 0
    0 1 3
    0 3 1
    1 0 3
    1 3 0
    3 0 1
    3 1 0
    0 1 4
    0 4 1
    ...
    9 6 8
    9 8 6
    7 8 9
    7 9 8
    8 7 9
    8 9 7
    9 7 8
    9 8 7
    720 non-repeating 3-digit sequences.

A third way is to construct the list of values to loop over by excluding
values already selected:

    use Algorithm::Loops qw/ NestedLoops /;
    $|= 1;
    my $len= 3;
    my $verbose= 1;
    my $count= NestedLoops(
        [   [0..9],
            ( sub {
                my %used;
                @used{@_}= (1) x @_;
                return [ grep !$used{$_}, 0..9 ];
            } ) x ($len-1),
        ],
        sub {
            print "@_\n"   if  $verbose;
            return 1;
        },
    );
    print "$count non-repeating $len-digit sequences.\n";

    0 1 2
    0 1 3
    0 1 4
    0 1 5
    0 1 6
    0 1 7
    0 1 8
    0 1 9
    0 2 1
    0 2 3
    ...
    9 7 8
    9 8 0
    9 8 1
    9 8 2
    9 8 3
    9 8 4
    9 8 5
    9 8 6
    9 8 7
    720 non-repeating 3-digit sequences.

Future releases of this module may add features to makes these last two
methods easier to write.

=cut


    use Algorithm::Loops qw( NestedLoops );
    my @choices= qw/ a b c f /;
    my $picks= 3;
    my %picked;
    print join $/, NestedLoops(
        [ ( \@choices ) x $picks ],
        {   OnlyWhen => sub {
                return -1   if  $picked{$_};
                $picked{$_}= 1;
                return  $picks == @_;
            },
            Post => sub {
                delete $picked{$_};
            },
        },
        sub { join '', @_ },
    ), '';

    return  sub {
        local( $_ );
        my $act;
        while( 1 ) {
            $act ||= 0;
            if(  $act < 0  ) {
                $act= -$act - 1;
                $act= @list   if  @list < $act;
                while(  $act--  ) {
                    if(  $post  ) {
                        $_= $list[$i--];
                        $post->( @_ );
                    }
                    $i--;
                    pop @list;
                }
            } elsif(  $i < $#$loops  ) {
                # Prepare to append one more value:
                $idx[++$i]= -1;
                if(  isa( $loops->[$i], 'CODE' )  ) {
                    $_= $list[-1];
                    $vals[$i]= $loops->[$i]->(@list);
                }
            }
            return   if  $i < 0;
            # Increment furthest value, chopping if done there:
            while( 1 ) {
                if(  $post  ) {
                    $_= $list[-1];
                    $post->( @_ );
                }
                last   if  ++$idx[$i] < @{$vals[$i]};
                pop @list;
                return   if  --$i < 0;
            }
            $list[$i]= $vals[$i][$idx[$i]];
            my $act;
            $act= !ref($when) ? $when : do {
                $_= $list[-1];
                $when->(@list);
            };
            return @list   if  $act;
        }
    };