File: driveHardDirect.cpp

package info (click to toggle)
libaria 2.8.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,628 kB
  • ctags: 16,574
  • sloc: cpp: 135,490; makefile: 925; python: 597; java: 570; ansic: 182
file content (457 lines) | stat: -rw-r--r-- 10,288 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
Adept MobileRobots Robotics Interface for Applications (ARIA)
Copyright (C) 2004, 2005 ActivMedia Robotics LLC
Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc.
Copyright (C) 2011, 2012, 2013 Adept Technology

     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation; either version 2 of the License, or
     (at your option) any later version.

     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details.

     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software
     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

If you wish to redistribute ARIA under different terms, contact 
Adept MobileRobots for information about a commercial version of ARIA at 
robots@mobilerobots.com or 
Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960
*/

// Includes
#include "Aria.h"

// A class that just wraps the robot so that people don't forget
// to unlock and lock the robot when using direct motion commands
class ArDirectMotion
{
public:
  // Constructor
  ArDirectMotion(ArRobot *robot)
  {myRobot = robot;}

  // Destructor
  ~ArDirectMotion() {}

  // Wait until the turn times out or has been completed
  // within the required range in degrees
  void finishTurn(double timeOut, double withinDeg)
  {
    ArTime start;
    while (1)
      {
	myRobot->lock();
	if (myRobot->isHeadingDone(withinDeg))
	  {
	    printf("Finished turn\n");
	    myRobot->unlock();
	    break;
	  }
	if (start.mSecSince() > timeOut)
	  {
	    printf("Turn timed out\n");
	    myRobot->unlock();
	    break;
	  }
	myRobot->unlock();
      }
  }

  // Wait until the move times out or has been completed
  // within the required range in mm
  void finishMove(double timeOut, double withinDist)
  {
    ArTime start;
    while (1)
      {
	myRobot->lock();
	if (myRobot->isMoveDone(withinDist))
	  {
	    printf("Finished move\n");
	    myRobot->unlock();
	    break;
	  }
	if (start.mSecSince() > timeOut)
	  {
	    printf("Turn timed out\n");
	    myRobot->unlock();
	    break;
	  }
	myRobot->unlock();
      }
  }
  
  // Move a distance if that distance + the buffer space
  // is clear, otherwise do nothing
  void move(double distance, double bufferSpace)
  {
    myRobot->lock();

    if(myRobot->checkRangeDevicesCurrentBox(0, -myRobot->getRobotRadius(),
					    distance + bufferSpace, myRobot->getRobotRadius())
       >= distance + myRobot->getRobotRadius() + bufferSpace)
      {
	myRobot->move(distance);
      }
    myRobot->unlock();
  }

  // Change heading by
  void setDeltaHeading(double heading)
  {
    myRobot->lock();
    myRobot->setDeltaHeading(heading);
    myRobot->unlock();
  }

  // Set to absolute heading
  void setHeading(double degree)
  {
    myRobot->lock();
    myRobot->setHeading(degree);
    myRobot->unlock();
  }

  // Set the maximum translational velocity
  void setTransVelMax(double max)
  {
    myRobot->lock();
    myRobot->setTransVelMax(max);
    myRobot->unlock();
  }

  // Set the translational acceleration
  void setTransAccel(double acc)
  {
    myRobot->lock();
    myRobot->setTransAccel(acc);
    myRobot->unlock();
  }

  // Set the translational deceleration
  void setTransDecel(double decel)
  {
    myRobot->lock();
    myRobot->setTransDecel(decel);
    myRobot->unlock();
  }

  // Set the rotational acceleration
  void setRotAccel(double acc)
  {
    myRobot->lock();
    myRobot->setRotAccel(acc);
    myRobot->unlock();
  }

  // Set the rotational deceleration
   void setRotDecel(double decel)
  {
    myRobot->lock();
    myRobot->setRotDecel(decel);
    myRobot->unlock();
  }

  // Set the maximum rotational velocity
  void setRotVelMax(double max)
  {
    myRobot->lock();
    myRobot->setRotVelMax(max);
    myRobot->unlock();
  }

  // Set the rotational velocity
  void setRotVel(double velocity)
  {
    myRobot->lock();
    myRobot->setRotVel(velocity);
    myRobot->unlock();
  }

  // Set the translational veocity
  void setVel(double velocity)
  {
    myRobot->lock();
    myRobot->setVel(velocity);
    myRobot->unlock();
  }

  // Set the velocities of each wheel
  void setVel2(double left, double right)
  {
    myRobot->lock();
    myRobot->setVel2(left, right);
    myRobot->unlock();
  }

  // Stop the wheels
  void stop()
  {
    myRobot->lock();
    myRobot->stop();
    myRobot->unlock();
  }
  

protected:
  ArRobot *myRobot;
};



int main(int argc, char** argv)
{
  // To simply connect
  ArSimpleConnector simpleConnector(&argc, argv);

  // The robot
  ArRobot robot;

  // The key handler
  ArKeyHandler keyHandler;
  
  // Sonar
  ArSonarDevice sonarDev;
  // Laser
  //ArSick laserDev;

  //Direct Motion Commands
  ArDirectMotion motion(&robot);

  // Parse the arguments from the simple connector
  simpleConnector.parseArgs();

  // Some arguments did not parse....
  // The program fails to understand and shuts down.
  if (argc > 1)
  {    
    simpleConnector.logOptions();
    keyHandler.restore();
    exit(1);
  }

  // Initialize Aria
  Aria::init();

  // Give Aria the key handler
  Aria::setKeyHandler(&keyHandler);
  
  // Attach the key handler to the robot
  robot.attachKeyHandler(&keyHandler);

  // Add the sonar to the robot
  robot.addRangeDevice(&sonarDev);
  // Add the laser (if we have it) to the robot
  //robot.addRangeDevice(&laserDev);

 // Connect to the robot
  if (!simpleConnector.connectRobot(&robot))
  {
    printf("Could not connect to robot... exiting\n");
    Aria::shutdown();
    keyHandler.restore();
    return 1;
  }
 
  
// Run the robot in its own thread
  robot.runAsync(false);

  //simpleConnector.setupLaser(&laserDev);
  //laserDev.runAsync();
  /*
   if (!laserDev.blockingConnect())
  {
    printf("Could not connect to SICK laser... exiting\n");
    Aria::shutdown();
    return 1;
  }
  */

  // turn on the motors
  robot.comInt(ArCommands::ENABLE, 1);
  robot.comInt(ArCommands::JOYDRIVE, 1);





  //----------------------------------------------------------------
  // The robot's settings for this run (feel free to change these)
  //----------------------------------------------------------------

  // Set the Robot's PIDs
  robot.comInt(82, 50);  // rotkp
  robot.comInt(83, 300); // rotkv
  robot.comInt(84, 10);  // rotki
  robot.comInt(85, 25);  // transkp
  robot.comInt(86, 600); // transkv
  robot.comInt(87, 10);  // transki  
 
  // Set the robot's velocities and accelerations
  motion.setTransVelMax(2999);
  motion.setRotVelMax(2999);
  motion.setTransAccel(2999);
  motion.setTransDecel(2999);
  motion.setRotAccel(2999);
  motion.setRotDecel(2999);



  //----------------------------------------------------------------
  // The robot's test pattern for this run (feel free to change this)
  //----------------------------------------------------------------

  // The test pattern described below
  printf("Executing random test pattern\n");

  // Some constants for this run
  const double TIMOUT_TIME  = 5000; // Time(msec) before a movement times out
  const double WITHIN_DIST  = 50;   // If within this(mm) of target, good enough
  const double WITHIN_DEG   = 10;   // If within this(deg) of target, good enough
  const double SPACE_BUFFER = 600;  // Extra space to give robot

  // Distances and angles for pattern
  double distance = 100;
  double angle    = 30;

  /*
    A figure 8 test pattern

  // The initial move
  motion.move(distance, SPACE_BUFFER);
  motion.finishMove(TIMOUT_TIME, WITHIN_DIST);

  while(robot.isRunning())
    {
      // Turn right
      if(!robot.isRunning())break;
      motion.setDeltaHeading(-angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);

      // Move forward
      if(!robot.isRunning())break;
      motion.move(distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
      
      // Turn right
      if(!robot.isRunning())break;
      motion.setDeltaHeading(-angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);


      // Move forward
      if(!robot.isRunning())break;
      motion.move(distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
      
      // Turn right
      if(!robot.isRunning())break;
      motion.setDeltaHeading(-angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);


      // Move forward
      if(!robot.isRunning())break;
      motion.move(2 * distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);

      // Turn left
      if(!robot.isRunning())break;
      motion.setDeltaHeading(angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);


      // Move forward
      if(!robot.isRunning())break;
      motion.move(distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);

      // Turn left
      if(!robot.isRunning())break;
      motion.setDeltaHeading(angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);


      // Move forward
      if(!robot.isRunning())break;
      motion.move(distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);

      // Turn left
      if(!robot.isRunning())break;
      motion.setDeltaHeading(angle);
      motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);


      // Move forward
      if(!robot.isRunning())break;
      motion.move(2 * distance, SPACE_BUFFER);
      motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
    }
  */


   while(robot.isRunning())
    {
      double randomNumber = rand();

      int choice = (int)randomNumber % 3;
 
      switch(choice)
	{
	case 0: 
	  // Turn right
	  motion.setDeltaHeading(-angle);
	  motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
	  break;
	case 1:
	  // Turn left
	  motion.setDeltaHeading(angle);
	  motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
	  break;
	case 2:
	  // Move forward
	  motion.move(distance, SPACE_BUFFER);
	  motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
	default:
	  motion.stop();
	  break;
	}
    }


  // now exit
  Aria::shutdown();
  return 0;
}