File: art_svp_render_aa.c

package info (click to toggle)
libart-lgpl 2.3.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,372 kB
  • ctags: 729
  • sloc: ansic: 10,124; sh: 6,679; makefile: 160
file content (463 lines) | stat: -rw-r--r-- 13,201 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998-2000 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* The spiffy antialiased renderer for sorted vector paths. */

#include "config.h"
#include "art_svp_render_aa.h"

#include <math.h>
#include <string.h> /* for memmove */
#include "art_misc.h"

#include "art_rect.h"
#include "art_svp.h"

#include <stdio.h>

typedef double artfloat;

struct _ArtSVPRenderAAIter {
  const ArtSVP *svp;
  int x0, x1;
  int y;
  int seg_ix;

  int *active_segs;
  int n_active_segs;
  int *cursor;
  artfloat *seg_x;
  artfloat *seg_dx;

  ArtSVPRenderAAStep *steps;
};

static void
art_svp_render_insert_active (int i, int *active_segs, int n_active_segs,
			      artfloat *seg_x, artfloat *seg_dx)
{
  int j;
  artfloat x;
  int tmp1, tmp2;

  /* this is a cheap hack to get ^'s sorted correctly */
  x = seg_x[i] + 0.001 * seg_dx[i];
  for (j = 0; j < n_active_segs && seg_x[active_segs[j]] < x; j++);

  tmp1 = i;
  while (j < n_active_segs)
    {
      tmp2 = active_segs[j];
      active_segs[j] = tmp1;
      tmp1 = tmp2;
      j++;
    }
  active_segs[j] = tmp1;
}

static void
art_svp_render_delete_active (int *active_segs, int j, int n_active_segs)
{
  int k;

  for (k = j; k < n_active_segs; k++)
    active_segs[k] = active_segs[k + 1];
}

#define EPSILON 1e-6

/* Render the sorted vector path in the given rectangle, antialiased.

   This interface uses a callback for the actual pixel rendering. The
   callback is called y1 - y0 times (once for each scan line). The y
   coordinate is given as an argument for convenience (it could be
   stored in the callback's private data and incremented on each
   call).

   The rendered polygon is represented in a semi-runlength format: a
   start value and a sequence of "steps". Each step has an x
   coordinate and a value delta. The resulting value at position x is
   equal to the sum of the start value and all step delta values for
   which the step x coordinate is less than or equal to x. An
   efficient algorithm will traverse the steps left to right, keeping
   a running sum.

   All x coordinates in the steps are guaranteed to be x0 <= x < x1.
   (This guarantee is a change from the gfonted vpaar renderer, and is
   designed to simplify the callback).

   There is now a further guarantee that no two steps will have the
   same x value. This may allow for further speedup and simplification
   of renderers.

   The value 0x8000 represents 0% coverage by the polygon, while
   0xff8000 represents 100% coverage. This format is designed so that
   >> 16 results in a standard 0x00..0xff value range, with nice
   rounding.

   Status of this routine:

   Basic correctness: OK

   Numerical stability: pretty good, although probably not
   bulletproof.

   Speed: Needs more aggressive culling of bounding boxes.  Can
   probably speed up the [x0,x1) clipping of step values.  Can do more
   of the step calculation in fixed point.

   Precision: No known problems, although it should be tested
   thoroughly, especially for symmetry.

*/

ArtSVPRenderAAIter *
art_svp_render_aa_iter (const ArtSVP *svp,
			int x0, int y0, int x1, int y1)
{
  ArtSVPRenderAAIter *iter = art_new (ArtSVPRenderAAIter, 1);

  iter->svp = svp;
  iter->y = y0;
  iter->x0 = x0;
  iter->x1 = x1;
  iter->seg_ix = 0;

  iter->active_segs = art_new (int, svp->n_segs);
  iter->cursor = art_new (int, svp->n_segs);
  iter->seg_x = art_new (artfloat, svp->n_segs);
  iter->seg_dx = art_new (artfloat, svp->n_segs);
  iter->steps = art_new (ArtSVPRenderAAStep, x1 - x0);
  iter->n_active_segs = 0;

  return iter;
}

#define ADD_STEP(xpos, xdelta)                          \
  /* stereotype code fragment for adding a step */      \
  if (n_steps == 0 || steps[n_steps - 1].x < xpos)      \
    {                                                   \
      sx = n_steps;                                     \
      steps[sx].x = xpos;                               \
      steps[sx].delta = xdelta;                         \
      n_steps++;                                        \
    }                                                   \
  else                                                  \
    {                                                   \
      for (sx = n_steps; sx > 0; sx--)                  \
	{                                               \
	  if (steps[sx - 1].x == xpos)                  \
	    {                                           \
	      steps[sx - 1].delta += xdelta;            \
	      sx = n_steps;                             \
	      break;                                    \
	    }                                           \
	  else if (steps[sx - 1].x < xpos)              \
	    {                                           \
	      break;                                    \
	    }                                           \
	}                                               \
      if (sx < n_steps)                                 \
	{                                               \
	  memmove (&steps[sx + 1], &steps[sx],          \
		   (n_steps - sx) * sizeof(steps[0]));  \
	  steps[sx].x = xpos;                           \
	  steps[sx].delta = xdelta;                     \
	  n_steps++;                                    \
	}                                               \
    }

void
art_svp_render_aa_iter_step (ArtSVPRenderAAIter *iter, int *p_start,
			     ArtSVPRenderAAStep **p_steps, int *p_n_steps)
{
  const ArtSVP *svp = iter->svp;
  int *active_segs = iter->active_segs;
  int n_active_segs = iter->n_active_segs;
  int *cursor = iter->cursor;
  artfloat *seg_x = iter->seg_x;
  artfloat *seg_dx = iter->seg_dx;
  int i = iter->seg_ix;
  int j;
  int x0 = iter->x0;
  int x1 = iter->x1;
  int y = iter->y;
  int seg_index;

  int x;
  ArtSVPRenderAAStep *steps = iter->steps;
  int n_steps;
  artfloat y_top, y_bot;
  artfloat x_top, x_bot;
  artfloat x_min, x_max;
  int ix_min, ix_max;
  artfloat delta; /* delta should be int too? */
  int last, this;
  int xdelta;
  artfloat rslope, drslope;
  int start;
  const ArtSVPSeg *seg;
  int curs;
  artfloat dy;

  int sx;
  
  /* insert new active segments */
  for (; i < svp->n_segs && svp->segs[i].bbox.y0 < y + 1; i++)
    {
      if (svp->segs[i].bbox.y1 > y &&
	  svp->segs[i].bbox.x0 < x1)
	{
	  seg = &svp->segs[i];
	  /* move cursor to topmost vector which overlaps [y,y+1) */
	  for (curs = 0; seg->points[curs + 1].y < y; curs++);
	  cursor[i] = curs;
	  dy = seg->points[curs + 1].y - seg->points[curs].y;
	  if (fabs (dy) >= EPSILON)
	    seg_dx[i] = (seg->points[curs + 1].x - seg->points[curs].x) /
	      dy;
	  else
	    seg_dx[i] = 1e12;
	  seg_x[i] = seg->points[curs].x +
	    (y - seg->points[curs].y) * seg_dx[i];
	  art_svp_render_insert_active (i, active_segs, n_active_segs++,
					seg_x, seg_dx);
	}
    }

  n_steps = 0;

  /* render the runlengths, advancing and deleting as we go */
  start = 0x8000;

  for (j = 0; j < n_active_segs; j++)
    {
      seg_index = active_segs[j];
      seg = &svp->segs[seg_index];
      curs = cursor[seg_index];
      while (curs != seg->n_points - 1 &&
	     seg->points[curs].y < y + 1)
	{
	  y_top = y;
	  if (y_top < seg->points[curs].y)
	    y_top = seg->points[curs].y;
	  y_bot = y + 1;
	  if (y_bot > seg->points[curs + 1].y)
	    y_bot = seg->points[curs + 1].y;
	  if (y_top != y_bot) {
	    delta = (seg->dir ? 16711680.0 : -16711680.0) *
	      (y_bot - y_top);
	    x_top = seg_x[seg_index] + (y_top - y) * seg_dx[seg_index];
	    x_bot = seg_x[seg_index] + (y_bot - y) * seg_dx[seg_index];
	    if (x_top < x_bot)
	      {
		x_min = x_top;
		x_max = x_bot;
	      }
	    else
	      {
		x_min = x_bot;
		x_max = x_top;
	      }
	    ix_min = floor (x_min);
	    ix_max = floor (x_max);
	    if (ix_min >= x1)
	      {
		/* skip; it starts to the right of the render region */
	      }
	    else if (ix_max < x0)
	      /* it ends to the left of the render region */
	      start += delta;
	    else if (ix_min == ix_max)
	      {
		/* case 1, antialias a single pixel */
		xdelta = (ix_min + 1 - (x_min + x_max) * 0.5) * delta;

		ADD_STEP(ix_min, xdelta)

		if (ix_min + 1 < x1)
		  {
		    xdelta = delta - xdelta;

		    ADD_STEP(ix_min + 1, xdelta)
		  }
	      }
	    else
	      {
		/* case 2, antialias a run */
		rslope = 1.0 / fabs (seg_dx[seg_index]);
		drslope = delta * rslope;
		last =
		  drslope * 0.5 *
		  (ix_min + 1 - x_min) * (ix_min + 1 - x_min);
		xdelta = last;
		if (ix_min >= x0)
		  {
		    ADD_STEP(ix_min, xdelta)
		    
		    x = ix_min + 1;
		  }
		else
		  {
		    start += last;
		    x = x0;
		  }
		if (ix_max > x1)
		  ix_max = x1;
		for (; x < ix_max; x++)
		  {
		    this = (seg->dir ? 16711680.0 : -16711680.0) * rslope *
		      (x + 0.5 - x_min);
		    xdelta = this - last;
		    last = this;

		    ADD_STEP(x, xdelta)
		  }
		if (x < x1)
		  {
		    this =
		      delta * (1 - 0.5 *
			       (x_max - ix_max) * (x_max - ix_max) *
			       rslope);
		    xdelta = this - last;
		    last = this;

		    ADD_STEP(x, xdelta)
		    
		    if (x + 1 < x1)
		      {
			xdelta = delta - last;

			ADD_STEP(x + 1, xdelta)
		      }
		  }
	      }
	  }
	  curs++;
	  if (curs != seg->n_points - 1 &&
	      seg->points[curs].y < y + 1)
	    {
	      dy = seg->points[curs + 1].y - seg->points[curs].y;
	      if (fabs (dy) >= EPSILON)
		seg_dx[seg_index] = (seg->points[curs + 1].x -
				     seg->points[curs].x) / dy;
	      else
		seg_dx[seg_index] = 1e12;
	      seg_x[seg_index] = seg->points[curs].x +
		(y - seg->points[curs].y) * seg_dx[seg_index];
	    }
	  /* break here, instead of duplicating predicate in while? */
	}
      if (seg->points[curs].y >= y + 1)
	{
	  curs--;
	  cursor[seg_index] = curs;
	  seg_x[seg_index] += seg_dx[seg_index];
	}
      else
	{
	  art_svp_render_delete_active (active_segs, j--,
					--n_active_segs);
	}
    }

  *p_start = start;
  *p_steps = steps;
  *p_n_steps = n_steps;

  iter->seg_ix = i;
  iter->n_active_segs = n_active_segs;
  iter->y++;
}

void
art_svp_render_aa_iter_done (ArtSVPRenderAAIter *iter)
{
  art_free (iter->steps);

  art_free (iter->seg_dx);
  art_free (iter->seg_x);
  art_free (iter->cursor);
  art_free (iter->active_segs);
  art_free (iter);
}

/**
 * art_svp_render_aa: Render SVP antialiased.
 * @svp: The #ArtSVP to render.
 * @x0: Left coordinate of destination rectangle.
 * @y0: Top coordinate of destination rectangle.
 * @x1: Right coordinate of destination rectangle.
 * @y1: Bottom coordinate of destination rectangle.
 * @callback: The callback which actually paints the pixels.
 * @callback_data: Private data for @callback.
 *
 * Renders the sorted vector path in the given rectangle, antialiased.
 *
 * This interface uses a callback for the actual pixel rendering. The
 * callback is called @y1 - @y0 times (once for each scan line). The y
 * coordinate is given as an argument for convenience (it could be
 * stored in the callback's private data and incremented on each
 * call).
 *
 * The rendered polygon is represented in a semi-runlength format: a
 * start value and a sequence of "steps". Each step has an x
 * coordinate and a value delta. The resulting value at position x is
 * equal to the sum of the start value and all step delta values for
 * which the step x coordinate is less than or equal to x. An
 * efficient algorithm will traverse the steps left to right, keeping
 * a running sum.
 *
 * All x coordinates in the steps are guaranteed to be @x0 <= x < @x1.
 * (This guarantee is a change from the gfonted vpaar renderer from
 * which this routine is derived, and is designed to simplify the
 * callback).
 *
 * The value 0x8000 represents 0% coverage by the polygon, while
 * 0xff8000 represents 100% coverage. This format is designed so that
 * >> 16 results in a standard 0x00..0xff value range, with nice
 * rounding.
 * 
 **/
void
art_svp_render_aa (const ArtSVP *svp,
		   int x0, int y0, int x1, int y1,
		   void (*callback) (void *callback_data,
				     int y,
				     int start,
				     ArtSVPRenderAAStep *steps, int n_steps),
		   void *callback_data)
{
  ArtSVPRenderAAIter *iter;
  int y;
  int start;
  ArtSVPRenderAAStep *steps;
  int n_steps;

  iter = art_svp_render_aa_iter (svp, x0, y0, x1, y1);


  for (y = y0; y < y1; y++)
    {
      art_svp_render_aa_iter_step (iter, &start, &steps, &n_steps);
      (*callback) (callback_data, y, start, steps, n_steps);
    }

  art_svp_render_aa_iter_done (iter);
}