1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
package Astro::Misc;
use strict;
=head1 NAME
Astro::Misc - Miscellaneous astronomical routines
=head1 SYNOPSIS
use Astro::Misc;
$U = calc_U($flux, $dist, $freq);
($dist1, $dist2)= kindist($ra, $dec, $vel, $epoch, $model);
=head1 DESCRIPTION
Astro::Misc contains an assorted set Perl routines for doing various
astronomical calculations.
=head1 AUTHOR
Chris Phillips Chris.Phillips@csiro.au
=head1 FUNCTIONS
=cut
BEGIN {
use Exporter ();
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK @EXPORT_FAIL
$Temp $parsecAU $au2km $G $c @ThompsonData);
$VERSION = '1.01';
@ISA = qw(Exporter);
@EXPORT = qw( read_possm calc_U calc_Nl lum2spectral
Nl2spectral kindist);
@EXPORT_OK = qw ( $Temp read_lovas a model_1 model_2 @ThompsonData $c);
@EXPORT_FAIL = qw ( );
use Carp;
use POSIX qw( asin log10);
use Astro::Time qw( $PI );
use Astro::Coord qw( fk5fk4 fk4gal );
}
$parsecAU = 206265; # The length of one parsec in AU
$au2km = 149.59787066e6; # Number of km in one AU
$G = 6.67e-11; # Gravitational constant
$c = 2.99792458e5; # speed of light in km/s
$Temp = 1e4; # Electron temperature
# Load up the data from Thompson 1984 ApJ 283 165 Table 1
use constant SPEC => 0;
use constant LUM => 2;
use constant NL => 5;
@ThompsonData = ();
while (<DATA>) {
push @ThompsonData, [split];
}
=over 4
=item B<read_possm>
Read_possm interprets the output file from the AIPS POSSM task.
the task may be called repeatably if there is more than one POSSM
output in the file. The file must be open before calling
read_possm, using the FileHandle module. The data from the possm
plot is returned in a hash. Some of the header values are returned
as scalar values while the actual plot values are returned as
references to arrays. The scalar values returned are:
SOURCE, DATE, TIME, BANDWIDTH, TYPE (='A&P'||'R&I')
The array references are: CHANNEL,
VELOCITY, FREQUENCY, AMPLITUDE, PHASE, ANTENNA
The global variable $Astro::Misc:oldpossm (default=0) controls whether
old or new style possm plots are read. For oldpossm=1, one of
VELOCITY or FREQUENCY will be a reference to an empty list (but the
hash value IS defined).
Usage: use FileHandle
my $fh = FileHandle->new();
my %ahash = ();
open($fh, 'possmfile');
read_possm($fh, %ahash);
Returns: 0 on success (but not hit eof)
1 on success (and hit eof)
2 on premature eof
Examples of hash usage:
$hash{SOURCE} # Source name
@{$hash{VELOCITY}} # Array of velocity values
${$hash{PHASE}}[4] # The fifth phase value
=cut
sub read_possm ($\%) {
my($fh, $hashref) = @_;
# Initialise the hash ref
$$hashref{CHANNEL} = [()];
$$hashref{VELOCITY} = [()];
$$hashref{FREQUENCY} = [()];
$$hashref{AMPLITUDE} = [()];
$$hashref{PHASE} = [()];
$$hashref{ANTENNA} = [()];
my $eof = 1;
# Read the header section
while (<$fh>) {
if (/^Source:\s*(\S*)/) {
$$hashref{SOURCE} = $1;
} elsif (/^OBS\.\sDATE:\s(\S+)\s+Time\sof\srecord:\s+
(\d+\/\s+\d+\s+\d+\s+\d+\.\d+)/x) {
$$hashref{DATE} = $1;
$$hashref{TIME} = $2;
} elsif (/^Bw \(\S+\):\s+(\S+)/) {
$$hashref{BANDWIDTH} = $1;
} elsif (/^Antenna\s#\s+\d+\s+name:\s+(\S+)/) {
push @{$$hashref{ANTENNA}}, $1;
} elsif (/^DATA/) {
$eof = 0;
last;
}
}
return 2 if $eof;
#Skip until find data
$eof = 1;
my $velocity = 0;
while (<$fh>) {
if ($astro::oldpossm) {
if (/Channel.*IF.*(Velocity|Frequency).*(Ampl|Real).*(Phase|Imag)/) {
$velocity = 1 if ($1 eq 'Velocity');
if ($2 eq 'Ampl') {
$$hashref{TYPE} = 'A&P';
} else {
$$hashref{TYPE} = 'R&I';
}
$eof = 0;
last;
}
} else {
# 5/6/03 Minor change. No time to fix properly bugger
# if (/Channel.*IF.*Frequency.*Velocity.*(Ampl|Real).*(Phase|Imag)/) {
if (/Channel.*IF.*Polar.*Frequency.*Velocity.*(Ampl|Real).*(Phase|Imag)/) {
$eof = 0;
if ($1 eq 'Ampl') {
$$hashref{TYPE} = 'A&P';
} else {
$$hashref{TYPE} = 'R&I';
}
last;
}
}
}
croak "$0: premature EOF" if $eof;
# Read the data in
$eof = 1;
my $n = 0;
while (<$fh>) {
if ($astro::oldpossm && /\s*(\d+)\s+ # Channel
\d+\s+ # IF
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Velocity Frequency
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Amplitude
([-+]?\d+\.\d*) # Phase
/x) {
$n++;
push(@{$$hashref{CHANNEL}},$1);
if ($velocity) {
push(@{$$hashref{VELOCITY}},$2);
} else {
push(@{$$hashref{FREQUENCY}},$2);
}
push(@{$$hashref{AMPLITUDE}},$3);
push(@{$$hashref{PHASE}},$4);
} elsif (/\s*(\d+)\s+ # Channel
\d+\s+ # IF
\S+\s+ # Polar
(\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Frequency
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Velocity
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Amplitude - Real
([-+]?\d+\.\d*) # Phase - Imag
/x) {
$n++;
push(@{$$hashref{CHANNEL}},$1);
push(@{$$hashref{FREQUENCY}},$2);
push(@{$$hashref{VELOCITY}},$3);
push(@{$$hashref{AMPLITUDE}},$4);
push(@{$$hashref{PHASE}},$5);
} elsif (/\s*\d+.*FLAGGED/) {
} elsif (/Header/) { #Next plot
$eof = 0;
last;
} else {
print STDERR '** ';
print STDERR;
}
}
croak "$0: No Data read\n" if ($n == 0);
return $eof;
}
=item B<read_lovas>
Read_lovas read the Lovas "Recommended Rest Frequencies for Observed
Interstellar Molecular Microwave Transitions - 1991 Revision"
(J. Phys. Chem. Ref. Data, 21, 181-272, 1992). Alpha quality!!
my @lovas = read_lovas($fname);
my @lovas = read_lovas($fname, $minfreq, $maxfreq);
=cut
# Probably does not work !!!
sub read_lovas ($;$$) {
warn 'Using Beta routine';
my($fname, $min, $max) = @_;
if (!open(LOVAS, $fname)) {
carp "Could not open $fname: $!\n";
return undef;
}
my ($freq, $calc, $uncert, $molecule, $form, $tsys, $source, $telescope, $ref);
my @lovas = ();
while (<LOVAS>) {
chomp;
$freq = substr $_, 1, 16;
$molecule = substr $_, 18, 11;
$form = substr $_, 29, 28;
$c = substr $_, 57, 1; # Could be either formulae or Tsys
$tsys = substr $_, 58, 7;
$source = substr $_, 65, 15;
$telescope = substr $_, 81, 12;
$ref = substr $_, 94;
# Clean up the strings
$freq =~ s/^\s+//;
$freq =~ s/\s+$//;
$molecule =~ s/^\s+//;
$molecule =~ s/\s+$//;
$source =~ s/^\s+//;
$source =~ s/\s+$//;
$telescope =~ s/^\s+//;
$telescope =~ s/\s+$//;
$ref =~ s/^\s+//;
$ref =~ s/\s+$//;
# Work out the contended column 57;
if ($c ne ' ') {
my ($s1) = $tsys =~ /^(\s+)/;
my ($s2) = $form =~ /(\s+)$/;
# Assign column 57 to the field with the "nearest" non-blank (preference
# to Tsys).
if (!defined $s1) {
$tsys = "$c$tsys";
} elsif (!defined $s2) {
$form .= $c;
} elsif (length($s2) > length($s1)) {
$tsys = "$c$tsys";
} else {
$form .= $c;
}
}
$form =~ s/^\s+//;
$form =~ s/\s+$//;
$tsys =~ s/^\s+//;
$tsys =~ s/\s+$//;
# Clean up unidentified molecules
if ($molecule eq 'unidentifie') {
$molecule .= $form;
$form = '';
}
if ($freq =~ /(.*)\*$/) {
my $oldfreq = $freq;
$freq = $1;
$calc = 1;
$freq =~ s/\s+$//;
print "Using $oldfreq -> \"$freq\"\n";
} else {
$calc = 0;
}
if ($freq =~ /([^\s\*\(]*[\d\.])\s*(\*)?\s*(\(\s*\d+\))?/) {
my $oldfreq = $freq;
$freq = $1;
if (defined $2) {
$calc = $2;
} else {
$calc = ' ';
}
if (defined $3) {
$uncert = $3;
} else {
$uncert = '';
}
#warn "Used $oldfreq-> $freq:$calc:$uncert\n";
} else {
warn "***Failed to parse $freq\n";
}
next if (defined $min && $freq<$min);
next if (defined $max && $freq>$max);
push @lovas, [$freq, $calc, $uncert, $molecule, $form, $tsys, $source,
$telescope, $ref];
}
close(LOVAS);
return @lovas;
}
# Used internally for calc_U
# Ref: Mezger & Henderson 1967, ApJ 147 p 471 Eq A.2
sub a ($) {
my $freq = shift;
my $a = 0.336 * $freq**0.1 * $Temp**-0.15
* (log(4.995e-2/$freq) + 1.5*log($Temp));
return($a);
}
=item B<calc_U>
$U = calc_U($flux, $dist, $freq);
Calculate U (Excitation Parameter) for an UCHII region
Based on Eqn 8 in Schraml and Mezger, 1969
$flux Integrated Source Flux Density (Jy)
$dist Distance to source (kpc)
$freq Frequency of observation (GHz)
Note:
Uses the global variable $Astro::Misc::Temp for electron temperature
Default is 10000K
=cut
sub calc_U ($$$) {
my ($flux, $dist, $freq) = @_;
my $U = 4.5526 * ($freq**0.1 / a($freq) * $Temp**0.35
* $flux * $dist**2)**(1/3);
return ($U);
}
=item B<calc_Nl>
$Nl = calc_Nl($U);
Calculate the Lyman continuum photon flux given U, the Excitation
Parameter for an UCHII region
$U is the Excitation Parameter (from calc_U)
Ref: Kurtz 1994 ApJS 91 p659 Eq (1) (Original Origin unknown)
=cut
sub calc_Nl ($) {
my ($U) = @_;
# This came from Panagia 1973 AJ 78 p929 Eq 5.
#my $Nl = ($U / 1.0976 / 2.01e-19)**3 * (3.43e-13);
# This is the same from Kurtz but includes the Electron Temperature
my $Nl = 8.04e46 * $Temp**-0.85 * $U**3;
return $Nl;
}
## Replaced by values from Thompson 1984
# my @speclist = ('O4', 'O5', 'O5.5', 'O6', 'O6.5', 'O7', 'O7.5', 'O8',
# 'O8.5', 'O9', 'O9.5', 'B0', 'B0.5', 'B1', 'B2', 'B3');
# my @lumlist = (6.11, 5.83, 5.60, 5.40, 5.17, 5.00, 4.92, 4.81,
# 4.73, 4.66, 4.58, 4.40, 4.04, 3.72, 3.46, 3.02);
# my @Nllist = (49.93, 49.62, 49.36, 49.08, 49.82, 48.62, 48.51, 48.35, 48.21,
# 48.08, 47.84, 47.36, 46.23, 45.29, 44.65, 43.69);
# die '@lumlist, @speclist and @Nlist must be the same size'
# if (scalar(@lumlist) != scalar(@speclist)
# || scalar(@lumlist) != scalar(@Nllist));
# =item B<lum2spectral>
# $spectral_type = lum2spectral($luminosity);
# Calculate the spectral type of a ZAMS star from its luminosity
# Based on Panagia, 1973, ApJ, 78, 929.
# $luminosity Star luminosity (normalised to Lsun)
# Returns undef if luminosity is out of range (O4 - B3)
# =cut
# sub lum2spectral ($) {
# my ($lum) = @_;
# $lum = log10($lum);
# my $n = scalar (@speclist);
# if ($lum > $lumlist[0]) {
# return ">$speclist[0]";
# } elsif ($lum < $lumlist[$n-1]) {
# return "<$speclist[$n-1]";
# };
# my $i = 1;
# # Find the closest pair
# while ($lum < $lumlist[$i]) {
# $i++;
# }
# # Return the closest one
# if ($lumlist[$i-1]-$lum > $lum - $lumlist[$i]) {
# return $speclist[$i];
# } else {
# return $speclist[$i-1];
# }
# }
# =item B<Nl2spectral>
# $spectral = Nl2spectral($Nl);
# Calculate the spectral type of a ZAMS star from its flux of
# Lyman Continuum Photons (Nl)
# Based on Panagia, 1973, ApJ, 78, 929
# $Nl Flux of Lyman Continuum Photons
# Returns undef if luminosity is out of range (O4 - B3)
# =cut
# sub Nl2spectral ($) {
# my ($Nl) = @_;
# $Nl = log10($Nl);
# my $n = scalar (@speclist);
# if ($Nl > $Nllist[0]) {
# return ">$speclist[0]";
# } elsif ($Nl < $Nllist[$n-1]) {
# return "<$speclist[$n-1]";
# };
# my $i = 1;
# # Find the closest pair
# while ($Nl < $Nllist[$i]) {
# $i++;
# }
# # Return the closest one
# if ($Nllist[$i-1]-$Nl > $Nl - $Nllist[$i]) {
# return $speclist[$i];
# } else {
# return $speclist[$i-1];
# }
# }
=item B<lum2spectral>
$spectral_type = lum2spectral($luminosity);
Calculate the spectral type of a ZAMS star from its luminosity
Based on Thompson 1984 ApJ 283 165 Table 1
$luminosity Star luminosity (normalised to Lsun)
=cut
sub lum2spectral($) {
my $lum = log10(shift);
my $n = scalar (@ThompsonData);
if ($lum < $ThompsonData[0][LUM]) {
return "<$ThompsonData[0][SPEC]";
} elsif ($lum > $ThompsonData[$n-1][LUM]) {
return ">$ThompsonData[$n-1][SPEC]";
};
$n = 1;
# Find the closest pair
while ($lum > $ThompsonData[$n][LUM]) {
$n++;
}
# Return the closest one
if ($ThompsonData[$n][LUM]-$lum < $lum - $ThompsonData[$n-1][LUM]) {
return $ThompsonData[$n][SPEC];
} else {
return $ThompsonData[$n-1][SPEC];
}
}
=item B<Nl2spectral>
$spectral = Nl2spectral($Nl);
Calculate the spectral type of a ZAMS star from its flux of
Lyman Continuum Photons (Nl)
Based on Panagia, 1973, ApJ, 78, 929
$Nl Flux of Lyman Continuum Photons
=cut
sub Nl2spectral ($) {
my $Nl = log10(shift);
my $n = scalar (@ThompsonData);
if ($Nl < $ThompsonData[0][NL]) {
return "<$ThompsonData[0][SPEC]";
} elsif ($Nl > $ThompsonData[$n-1][NL]) {
return ">$ThompsonData[$n-1][SPEC]";
};
$n = 1;
# Find the closest pair
while ($Nl > $ThompsonData[$n][NL]) {
$n++;
}
# Return the closest one
if ($ThompsonData[$n][NL]-$Nl < $Nl - $ThompsonData[$n-1][NL]) {
return $ThompsonData[$n][SPEC];
} else {
return $ThompsonData[$n-1][SPEC];
}
}
=item B<kindist>
($dist1, $dist2)= kindist($ra, $dec, $vel, $epoch, $model);
Calculate the kinematic distance to an object
$dist1, $dist2 Near/Far distance (kpc)
$ra RA of object (turns)
$dec Dec of object (turns)
$vel LSR Velocity (km/s)
$epoch Epoch of coords (J2000/J/B1950/B)
$model Model to use (1 or 2)
Note:
Model 1 is based on Brand and Blitz, 1993, A&A, 275, 67-90.
Model 2 has unknown origin.
=back
=cut
sub kindist ($$$$$) {
my ($ra, $dec, $vel, $epoch, $model) = @_;
my ($l, $b, $dist1, $dist2, $psi, $phi, $phid, $psid);
$l = 0.0;
$b = 0.0;
if (($epoch eq 'J2000') || ($epoch eq 'J')) {
($ra, $dec) = fk5fk4($ra, $dec);
}
($l, $b) = fk4gal($ra, $dec);
$l *= 2.0*$PI;
$b *= 2.0*$PI;
croak "\$model must equal 1 or 2\n"
if ($model != 1 && $model != 2) ;
my $Ro = 8.5;
my $THETAo = 220;
my $R = 0.0004;
my $Wo = $THETAo/$Ro;
my $W = $vel/($Ro * sin($l)) + $Wo;
my ($sampW);
my $eps = 9999999.0;
while ($eps > 0.1) {
$R += 0.1;
if ($model == 1) {
$sampW = model_1($R);
} else {
$sampW = model_2($R);
}
$eps = abs($W - $sampW)/$W;
if ($R > 5.0*$Ro) {
warn "Could not find within limits.\n";
$eps = 0.0;
}
}
$R = $R - 0.5;
$R = 0.0 if ($R < 0.0);
$eps = 9999999.0;
while ($eps > 0.0001) {
$R += 0.0001;
if ($model == 1) {
$sampW = model_1($R);
} else {
$sampW = model_2($R);
}
$eps = abs($W - $sampW)/$W;
if ($R > 5.0*$Ro) {
warn "Could not find within limits.\n";
$eps = 0.0;
}
}
if ( sin($l) * $Ro/$R > 1.0) {
$psi = $PI/2;
} elsif ( sin($l)*$Ro/$R < -1.0) {
$psi = -$PI/2;
} else {
$psi = asin(sin($l)*$Ro/$R);
}
$phi = $PI - $psi - $l;
if (sin($l) == 0.0) {
$dist1 = 0.0;
$dist2 = 0.0;
} else {
$dist1 = abs($R*sin($phi)/sin($l));
$psid = $PI - $psi;
$phid = $PI - $psid - $l;
$dist2 = abs($R*sin($phid)/sin($l));
}
if ($dist1 <= $dist2) {
return($dist1, $dist2);
} else {
return($dist2, $dist1);
}
}
sub model_1 ($) {
# Model from Brand and Blitz, 1993, A&A, 275, 67-90
my ($R) = @_;
my $Ro = 8.5;
my $THETAo = 220;
my $q = 1.00767;
my $rr = 0.0394;
my $s = 0.00712;
# my $s = 0.00698;
# my $q = 1.0074;
# my $rr = 0.0382;
return (($q*($R/$Ro)**$rr + $s)*$THETAo/$R);
}
sub model_2 ($) {
my ($R) = @_;
my $Ro = 8.5;
my $THETAo = 220;
my @A = (0.0, +3069.81, -15809.8, +43980.1, -68287.3,
+54904.0, -17731.0);
my @B = (+325.0912, -248.1467, +231.87099, -110.73531,
+25.073006, -2.110625);
my @C = (-2342.6564, +2507.60391, -1024.068760, +224.562732,
-28.4080026, +2.0697271, -0.08050808, +0.00129348);
my $D0 = 234.88;
my $term1 = 0.0;
my ($i);
if ($R <= 0.09*$Ro) {
for ($i = 0; $i < 7; $i++) {
$term1 = $term1 + $A[$i]*$R**$i;
}
} elsif ((0.09*$Ro < $R) && ($R <= 0.45*$Ro)) {
for ($i = 0; $i < 6; $i++) {
$term1 = $term1 + $B[$i]*$R**$i;
}
} elsif (((0.45*$Ro) < $R) && ($R <= (1.6*$Ro))) {
for ($i = 0; $i < 8; $i++) {
$term1 = $term1 + $C[$i]*$R**$i;
}
} elsif ((1.6*$Ro) < $R) {
$term1 = $D0;
} else {
die "model_2 inconsistent\n";
}
return ($term1/$R);
}
1;
__DATA__
G2 5500 -0.17 10.80 41.00 28.42 55.92 56.07 43.33
G2 5800 0.00 10.84 41.90 29.32 56.19 56.34 43.60
GO 5980 0.10 10.86 42.44 29.85 56.35 56.50 43.76
G0 6000 0.11 10.86 42.49 29.90 56.37 56.52 43.78
F8 6210 0.22 10.88 43.14 30.55 56.53 56.68 43.94
F7 6370 0.28 10.89 43.50 30.91 56.62 56.77 44.03
F7 6500 0.34 10.91 43.85 31.26 56.71 56.86 44.13
F6 6580 0.38 10.92 44.06 31.47 56.76 56.91 44.18
F5 6810 0.48 10.94 44.59 32.00 56.90 57.05 44.32
F3 7000 0.56 10.95 45.01 32.43 57.01 57.16 44.43
F2 7240 0.66 10.97 45.39 32.80 57.14 57.29 44.56
F2 7500 0.77 11.00 45.80 33.21 57.29 57.44 44.70
F0 7520 0.78 11.00 45.86 33.27 57.30 57.45 44.71
F0 8000 0.94 11.03 46.78 34.19 57.52 57.67 44.93
A5 8500 1.11 11.06 47.81 35.22 57.74 57.89 45.16
A4 8630 1.16 11.07 48.22 36.63 57.81 57.96 45.23
A3 8840 1.23 11.08 48.79 36.20 57.91 58.06 45.33
A3 9000 1.27 11.09 49.11 36.53 57.97 58.12 45.39
A2 9070 1.29 11.09 49.27 36.69 58.00 58.15 45.42
A1 9320 1.35 11.10 49.77 37.19 58.09 58.24 45.51
A1 9400 1.37 11.10 49.93 37.34 58.12 58.27 45.54
A0 9600 1.43 11.12 50.24 37.65 58.20 58.35 45.62
B9.5 10000 1.55 11.14 50.85 38.26 58.37 58.52 45.78
B9.5 10500 1.69 11.17 51.39 38.81 58.55 58.70 45.96
B9 10700 1.74 11.17 51.62 39.04 58.62 58.77 46.03
B9 11000 1.79 11.18 51.85 39.26 58.69 58.84 46.10
B9 11500 1.88 11.18 52.26 39.67 58.80 58.95 46.22
B8 12000 1.97 11.19 52.62 40.03 58.92 59.07 46.33
B8 12500 2.06 11.20 52.98 40.39 59.03 59.18 46.44
B8 13000 2.13 11.20 53.29 40.71 59.11 59.26 46.53
B7 13600 2.22 11.21 53.60 41.02 59.22 59.37 46.63
B7 14000 2.30 11.22 53.88 41.30 59.30 59.45 46.71
B6 14600 2.42 11.24 54.23 41.65 59.43 59.58 46.84
B6 15000 2.50 11.26 54.47 41.89 59.52 59.67 46.93
B5 15600 2.61 11.28 54.80 42.22 59.64 59.79 47.05
B5 16000 2.68 11.30 55.01 42.42 59.71 59.86 47.12
B5 17000 2.85 11.33 55.52 42.93 59.88 60.03 47.30
B3 17900 3.01 11.36 55.95 43.36 60.05 60.20 47.47
B3 18000 3.03 11.37 56.00 43.41 60.07 60.22 47.48
B3 20000 3.37 11.45 56.83 44.24 60.41 60.56 47.83
B2 20500 3.45 11.46 57.04 44.45 60.49 60.64 47.91
B2 22500 3.69 11.51 57.66 45.08 60.73 60.88 48.14
B1 22600 3.70 11.51 57.69 45.11 60.74 60.89 48.15
B1 25000 3.92 11.53 58.36 45.78 60.96 61.11 48.37
B0.5 26200 4.03 11.54 58.70 46.12 61.07 61.22 48.48
B0.5 30000 4.33 11.58 59.62 47.03 61.36 61.51 48.77
B0 30900 4.40 11.59 59.82 47.23 61.42 61.57 48.83
O9.5 33000 4.58 11.61 60.34 47.75 61.58 61.73 48.99
O9 34500 4.66 11.62 60.57 47.98 61.65 61.80 49.06
O9 35000 4.70 11.63 60.68 48.09 61.69 61.84 49.10
O8.5 35500 4.73 11.63 60.73 48.14 61.72 61.87 49.13
O8 36500 4.81 11.65 60.85 48.26 61.79 61.94 49.20
O7.5 37500 4.92 11.68 61.02 48.43 61.88 62.03 49.29
O7 38500 5.00 11.70 61.15 48.56 61.95 62.10 49.36
O6.5 40000 5.17 11.75 61.41 48.83 62.10 62.25 49.51
O6 42000 5.40 11.82 61.67 49.08
O5.5 44500 5.60 11.87 61.95 49.36
O5 47000 5.83 11.94 62.21 49.62
O4 50000 6.11 12.02 62.52 49.93
|