1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/* plugin_common - Routines common to several plugins
* Copyright (C) 2002,2003,2004 Josh Coalson
*
* dithering routine derived from (other GPLed source):
* mad - MPEG audio decoder
* Copyright (C) 2000-2001 Robert Leslie
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "include/common.h"
#include "include/dither.h"
#include "FLAC/assert.h"
/* 32-bit pseudo-random number generator
*
* @@@ According to Miroslav, this one is poor quality, the one from the
* @@@ original replaygain code is much better
*/
static FLAC__INLINE FLAC__uint32 prng(FLAC__uint32 state)
{
return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL;
}
/* dither routine derived from MAD winamp plugin */
typedef struct {
FLAC__int32 error[3];
FLAC__int32 random;
} dither_state;
static FLAC__INLINE FLAC__int32 linear_dither(
unsigned source_bps, unsigned target_bps, FLAC__int32 sample,
dither_state *dither, const FLAC__int32 MIN, const FLAC__int32 MAX) {
unsigned scalebits;
FLAC__int32 output, mask, random;
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
/* noise shape */
sample += dither->error[0] - dither->error[1] + dither->error[2];
dither->error[2] = dither->error[1];
dither->error[1] = dither->error[0] / 2;
/* bias */
output = sample + (1L << (source_bps - target_bps - 1));
scalebits = source_bps - target_bps;
mask = (1L << scalebits) - 1;
/* dither */
random = (FLAC__int32)prng(dither->random);
output += (random & mask) - (dither->random & mask);
dither->random = random;
/* clip */
if (output > MAX) {
output = MAX;
if (sample > MAX) {
sample = MAX;
}
} else if (output < MIN) {
output = MIN;
if (sample < MIN) {
sample = MIN;
}
}
/* quantize */
output &= ~mask;
/* error feedback */
dither->error[0] = sample - output;
/* scale */
return output >> scalebits;
}
size_t pack_pcm_signed_big_endian(FLAC__byte *data, FLAC__int32 *input,
unsigned wide_samples, unsigned channels, unsigned source_bps, unsigned target_bps) {
static dither_state dither[FLAC__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
unsigned samples, channel;
const unsigned bytes_per_sample = target_bps / 8;
const unsigned incr = bytes_per_sample * channels;
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
FLAC__ASSERT(channels > 0 && channels <= FLAC__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
for (channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
while (samples--) {
if (source_bps != target_bps) {
sample = linear_dither(source_bps, target_bps, *input++, &dither[channel], MIN, MAX);
} else {
sample = *input++;
}
switch (target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 16:
data[0] = (FLAC__byte)(sample >> 8);
data[1] = (FLAC__byte)sample;
break;
case 24:
data[0] = (FLAC__byte)(sample >> 16);
data[1] = (FLAC__byte)(sample >> 8);
data[2] = (FLAC__byte)sample;
break;
}
data += incr;
}
}
return wide_samples * channels * (target_bps/8);
}
size_t pack_pcm_signed_little_endian(FLAC__byte *data, FLAC__int32 *input,
unsigned wide_samples, unsigned channels, unsigned source_bps, unsigned target_bps) {
static dither_state dither[FLAC__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
unsigned samples, channel;
const unsigned bytes_per_sample = target_bps / 8;
const unsigned incr = bytes_per_sample * channels;
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
FLAC__ASSERT(channels > 0 && channels <= FLAC__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
for (channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
while (samples--) {
if (source_bps != target_bps) {
sample = linear_dither(source_bps, target_bps, *input++, &dither[channel], MIN, MAX);
} else {
sample = *input++;
}
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 24:
data[2] = (FLAC__byte)(sample >> 16);
/* fall through */
case 16:
data[1] = (FLAC__byte)(sample >> 8);
data[0] = (FLAC__byte)sample;
}
data += incr;
}
}
return wide_samples * channels * (target_bps/8);
}
|