File: AudioMask.cc

package info (click to toggle)
libaudiomask 1.0-3
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid, stretch
  • size: 17,668 kB
  • ctags: 636
  • sloc: cpp: 787; perl: 108; makefile: 67
file content (153 lines) | stat: -rw-r--r-- 4,558 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
 libaudiomask - hybrid simultaneous audio masking threshold evaluation library
    Copyright (C) 2000-2010  Dr Matthew Raphael Flax

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <math.h>
#include <complex>
#include <values.h>
#include "AudioMask.H"

AudioMask::
AudioMask(int sampFreq, int fBankCount) : MooreSpread(fBankCount){
  fs=sampFreq;
  mask=Lvmu=NULL;
  if (!(excitation=new double[fBankCount]))
    std::cerr << "AudioMask: excitation malloc: Out of Memory"<<std::endl;
  if (!(mask=new double[fBankCount]))
    std::cerr << "AudioMask: mask malloc: Out of Memory"<<std::endl;
  if (!(Lvmu=new double[fBankCount*fBankCount]))
    std::cerr << "AudioMask: Lvmu malloc: Out of Memory"<<std::endl;
}

AudioMask::
~AudioMask(void){
  if (excitation) delete [] excitation;
  excitation=NULL;
  if (mask) delete [] mask;
  mask=NULL;
  if (Lvmu) delete [] Lvmu;
  Lvmu=NULL;
}

#include <fstream>
#define F2CB(f) (13.3*atan(0.75*f/1000))
void AudioMask::
exciteTerhardt(double **filterBankOutput, int sampleCount){
  max=-MAXDOUBLE;
  // Find the factor to scale by and scale ...
  factor=fabs(bankCount-F2CB((double)fs/2.0));
  //  std::cout <<"factor "<<factor<<std::endl;

  // Find the excitation ...
  for (int i=0;i<bankCount;i++){
    //    int which=bankCount-i-1;
    //int which=i;
    excitation[i]=0.0;
    for (int j=0;j<sampleCount;j++){
      excitation[i]+=filterBankOutput[i][j];
    }
    excitation[i]=10.0*log10(excitation[i]);
    if (sampleCount!=fs){
      //      std::cout<<"adjusting"<<std::endl;
      //      excitation[i]+=20*log10((fs/2.0-sampleCount)/sampleCount);
    }
  }

  /*  ofstream ex("excite.dat");
  for (int i=0;i<bankCount;i++)
    ex<<excitation[i]<<'\n';
    ex.close();*/
  
  // Find the spreading function ...
  //  MooreSpread::excite(filterBankOutput, sampleCount, fs);
  MooreSpread::excite(filterBankOutput, fs, fs);
  /*
  ofstream os("spread.dat");
  for (int i=0;i<bankCount;i++){
    for (int j=0;j<bankCount;j++)
      os<<10.0*log10(spread[i][j])<<'\t';
    os<<std::endl;
  }
  os.close();
  */
  // Find the mask ...
  for (int i=0;i<bankCount;i++){
    for (int j=0;j<bankCount;j++)
      Lvmu[j+i*bankCount]=excitation[j]+10.0*log10(spread[i][j]);
  }

  /*  ofstream lvmu("Lvmu.dat");
  for (int i=0;i<bankCount;i++){
    for (int j=0;j<bankCount;j++){
      lvmu<<Lvmu[j+i*bankCount]<<'\t';
    }
    lvmu<<std::endl;
    }*/

  for (int i=0;i<bankCount;i++){
    mask[i]=0.0;
    for (int j=0;j<i;j++) // Lower Freqs.
      mask[i]+=pow(10.0,Lvmu[i+j*bankCount]/20.0);
    for (int j=i+1;j<bankCount;j++) // Higher Freqs.
      mask[i]+=pow(10.0,Lvmu[i+j*bankCount]/20.0);
    mask[i]/=factor;
    if (mask[i]>max) max=mask[i];
    //    std::cout<<excitation[i]<< '\t'<<mask[i]<<std::endl;
  }
}

#define ALPHA 0.8
void AudioMask::
exciteBeerends(double **filterBankOutput, int sampleCount){
  max=-1000000.0;
  // Find the factor to scale by and scale ...
  factor=fabs(bankCount-F2CB((double)fs/2.0));

  // Find the excitation ...
  for (int i=0;i<bankCount;i++){
    int which=bankCount-i-1;
    excitation[which]=0.0;
    for (int j=0;j<sampleCount;j++){
      excitation[which]+=filterBankOutput[i][j];
    }
    excitation[which]=10.0*log10(excitation[which]);
  }

  // Find the spreading function ...
  MooreSpread::excite(filterBankOutput, sampleCount, fs);

  // Find the mask ...
  for (int i=0;i<bankCount;i++){
    for (int j=0;j<bankCount;j++)
      Lvmu[j+i*bankCount]=excitation[j]+10.0*log10(spread[i][j]);
  }

  for (int i=0;i<bankCount;i++){
    mask[i]=0.0;
    for (int j=0;j<i;j++) // Lower Freqs.
      mask[i]+=pow(10.0,pow(Lvmu[i+j*bankCount],ALPHA)/20.0);
    for (int j=i+1;j<bankCount;j++) // Higher Freqs.
      mask[i]+=pow(10.0,pow(Lvmu[i+j*bankCount],ALPHA)/20.0);
    mask[i]=pow(mask[i], 1.0/ALPHA);
    mask[i]/=factor;
    if (mask[i]>max) max=mask[i];
    //    std::cout<<excitation[i]<< '\t'<<mask[i]<<std::endl;
  }
}