1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*
libaudiomask - hybrid simultaneous audio masking threshold evaluation library
Copyright (C) 2000-2010 Dr Matthew Raphael Flax
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AudioMasker.H"
#include <math.h>
#include <strings.h>
AudioMasker::
AudioMasker(int sampFreq, int fBankCount) : AudioMask(sampFreq, fBankCount){
output=powOutput=NULL;
input=NULL;
//gtfb=NULL;
pfb=NULL;
fftData=NULL;
fft=NULL;
bankCount=fBankCount;
std::cout<<"Bank Count "<<bankCount<<std::endl;
// sampleFreq=DEFAULT_SAMPLEFREQ;
sampleCount=DEFAULT_SAMPLECOUNT;
FBMalloc();
}
AudioMasker::
AudioMasker(void) : AudioMask(DEFAULT_SAMPLEFREQ, DEFAULT_FBCOUNT){
output=powOutput=NULL;
input=NULL;
//gtfb=NULL;
pfb=NULL;
fftData=NULL;
fft=NULL;
bankCount=DEFAULT_FBCOUNT;
// std::cout<<"Bank Count "<<bankCount<<std::endl;
//sampleFreq=DEFAULT_SAMPLEFREQ;
sampleCount=DEFAULT_SAMPLECOUNT;
FBMalloc();
}
AudioMasker::
~AudioMasker(void){
//std::cout<<"AudioMasker::~AudioMasker"<<std::endl;
FBDeMalloc();
}
// Filter bank memory de-allocation routine
void AudioMasker::
FBDeMalloc(void){
//std::cout<<"AudioMasker::FBDeMalloc"<<std::endl;
if (output){
for (int i=0;i<bankCount;i++)
if (output[i]) delete [] output[i];
delete [] output;
}
output=NULL;
if (powOutput){
for (int i=0;i<bankCount;i++)
if (powOutput[i]) delete [] powOutput[i];
delete [] powOutput;
}
powOutput=NULL;
if (input) delete [] input;
input=NULL;
if (pfb) delete pfb;
pfb=NULL;
// if (gtfb) delete gtfb;
//gtfb=NULL;
if (fftData) delete fftData;
fftData=NULL;
if (fft) delete fft;
fft=NULL;
}
// Filter bank memory allocation routine
void AudioMasker::
FBMalloc(void){
FBDeMalloc(); //Ensure not malloced already
// Allocate the output matrix of the perceptual filters
if (!(output=new double*[bankCount])){
std::cerr<<"AudioMasker::FBMalloc : filter bank malloc error initial"<<std::endl;
exit(-1);
} else {
for (int i=0;i<bankCount;i++)
output[i]=NULL;
for (int i=0;i<bankCount;i++)
if (!(output[i]=new double[sampleCount])){
std::cerr<<"AudioMasker::FBMalloc : filter bank malloc error secondary"<<std::endl;
FBDeMalloc();
exit(-1);
}
}
// Allocate the powOutput matrix of the perceptual filters
if (!(powOutput=new double*[bankCount])){
std::cerr<<"AudioMasker::FBMalloc : filter bank malloc error initial"<<std::endl;
exit(-1);
} else {
for (int i=0;i<bankCount;i++)
powOutput[i]=NULL;
for (int i=0;i<bankCount;i++)
// if (!(powOutput[i]=new double[(int)ceil((double)sampleCount/2.0)])){
if (!(powOutput[i]=new double[(int)ceil((double)fs/2.0)])){
std::cerr<<"AudioMasker::FBMalloc : filter bank malloc error secondary"<<std::endl;
FBDeMalloc();
exit(-1);
}
}
if (!(input=new double[sampleCount])){
std::cerr<<"AudioMasker::FBMalloc : input malloc error"<<std::endl;
FBDeMalloc();
exit(-1);
}
// if (!(gtfb= new GTFB(DEFAULT_LOWFERQ, sampleFreq, bankCount))){
// std::cerr<<"AudioMasker::FBMalloc : gtfb malloc error"<<std::endl;
// FBDeMalloc();
// exit(-1);
//}
if (!(pfb= new DepUKFB(fs, bankCount))){
std::cerr<<"AudioMasker::FBMalloc : pfb malloc error"<<std::endl;
FBDeMalloc();
exit(-1);
}
// if (!(fftData=new realFFTData(sampleCount))){
if (!(fftData=new realFFTData(fs))){
std::cerr<<"AudioMasker::FBMalloc : fftData malloc error"<<std::endl;
FBDeMalloc();
exit(-1);
}
if (!(fft=new realFFT(fftData))){
std::cerr<<"AudioMasker::FBMalloc : fft malloc error"<<std::endl;
FBDeMalloc();
exit(-1);
}
}
/** These should be implemented differently for different Input types
*/
void AudioMasker::
excite(short int *Input, int sCount){
if (sCount != sampleCount)// Check for matrix re-size
FBDeMalloc();
sampleCount=sCount;
if (!output) // Check for null matrix
FBMalloc();
for (int i=0;i<sCount;i++) //copy the input as double
input[i]=(double)Input[i];
process(); //Do the processing
}
void AudioMasker::
excite(double *Input, int sCount){
if (sCount != sampleCount)// Check for matrix re-size
FBDeMalloc();
sampleCount=sCount;
if (!output) // Check for null matrix
FBMalloc();
for (int i=0;i<sCount;i++) //copy the input as double
input[i]=Input[i];
process(); //Do the processing
}
double AudioMasker::
findThreshold(double freq){
for (int i=bankCount-1;i>=0;i--){
// if (freq>=gtfb->edgeFreq[i])
if (freq>=pfb->ef[i]){
// std::cout<<i<<std::endl;
return mask[i];
}
}
std::cerr <<"AudioMasker::findThreshold : freq !=> gtfb->edgeFreq["<<bankCount-1<<"] returning 0"<<std::endl;
return 0;
}
#include <fstream>
void AudioMasker::
process(void){
bzero(fftData->in, fs*sizeof(fftw_real));//Ensure we start with a zero array
for (int j=0; j<sampleCount;j++)//Find pow spec of input
fftData->in[j]=input[j];
fft->fwdTransform();
fftData->compPowerSpec();
for (int j=0; j<(int)rint((double)fs/2.0);j++)
fftData->power_spectrum[j]=sqrt(fftData->power_spectrum[j]);
//ofstream output("w");
//int halfSampleCount=(int)rint((double)sampleCount/2.0);
int halfFS=(int)rint(fs/2.0);
for (int i=0;i<bankCount;i++){ // Find power spectra and copy over
// for (int j=0; j<halfSampleCount;j++){
for (int j=0; j<halfFS;j++){
// output<<(*pfb)(i,j,halfSampleCount)<<'\t';
// //powOutput[i][j]=fftData->power_spectrum[j]*(*pfb)(i,j,halfSampleCount);
powOutput[i][j]=fftData->power_spectrum[j]*(*pfb)(i,j,halfFS);
}
//output<<std::endl;
}
/*
ofstream outF("filter.dat");
for (int i=0;i<bankCount;i++){
for (int j=0;j<sampleCount/2;j++)
outF<<powOutput[i][j]<<'\t';
outF<<std::endl;
}
outF.close();
*/
// gtfb->grab(1);
for (int i=0; i<bankCount;i++)//Set up freq of interest (pfb centre freqs.)
setCFreq(i, pfb->cf[i]);
// setCFreq(i, gtfb->prev()->cf);
exciteTerhardt(powOutput, fs);// Find the masking function
// exciteTerhardt(powOutput, sampleCount);// Find the masking function
//exciteBeerends(powOutput, sampleCount);// Find the masking function
}
/*
#include <fstream>
#include "../gammatone/GTSensitivity.H"
void AudioMasker::
process(void){
//for (int i=0;i<bankCount;i++){ //Zero the filter bank output(due to IIR nature)
// bzero(output1[i], sampleCount*sizeof(double));
// bzero(output2[i], sampleCount*sizeof(double));
// bzero(output[i], sampleCount*sizeof(double));
// }
LinkList<double **> outputs;
outputs.add(output1);
outputs.add(output2);
outputs.grab(1);
for (int i=0;i<bankCount;i++) //Zero filter bank output(due to IIR nature)
bzero(outputs.current()[i], sampleCount*sizeof(double));
for (int i=1; i<=bankCount;i++) // Filter the input
gtfb->grab(i)->filter(input, &outputs.current()[i-1][0], sampleCount);
double **last, **now;
for (int j=1;j<RECURSE;j++){
last=outputs.current();
now=outputs.next();
for (int i=0;i<bankCount;i++) //Zero filter bank output(due to IIR nature)
bzero(now[i], sampleCount*sizeof(double));
for (int i=1; i<=bankCount;i++) // Filter the input
gtfb->grab(i)->filter(&last[i-1][0], &now[i-1][0], sampleCount);
}
for (int i=1; i<=bankCount;i++) // Filter the input - originally once
gtfb->grab(i)->filter(input, &output[i-1][0], sampleCount);
// GTSensitivity gts; // sensitivity adjustement for the IIR gammatone filterbank
for (int i=0;i<bankCount;i++){ // Find power spectra and copy over
for (int j=0; j<sampleCount;j++)
fftData->in[j]=outputs.current()[i][j];
//fftData->in[j]=output[i][j];
fft->fwdTransform();
fftData->compPowerSpec();
double cf=gtfb->grab(i+1)->cf;
for (int j=0; j<(int)rint((double)sampleCount/2.0);j++){
// powOutput[i][j]=pow(10.0,gts.find(j,cf,fs)/20.0)*sqrt(fftData->power_spectrum[j]);
powOutput[i][j]=sqrt(fftData->power_spectrum[j]);
}
//double shift=fftData->power_spectrum[fftData->minPowerBin];
////The following tries to correct for the shift up in the gammatone response
//if (shift>10.0)
// for (int j=0; j<(int)rint((double)sampleCount/2.0);j++)
//powOutput[i][j]=sqrt(fftData->power_spectrum[j]/shift);
//else
// for (int j=0; j<(int)rint((double)sampleCount/2.0);j++)
//powOutput[i][j]=sqrt(fftData->power_spectrum[j]);
}
ofstream outF("filter.dat");
for (int i=0;i<bankCount;i++){
for (int j=0;j<sampleCount/2;j++)
outF<<powOutput[i][j]<<'\t';
outF<<std::endl;
}
outF.close();
gtfb->grab(1);
for (int i=0; i<bankCount;i++)//Set up freq of interest (pfb centre freqs.)
setCFreq(i, gtfb->prev()->cf);
exciteTerhardt(powOutput, sampleCount);// Find the masking function
//exciteBeerends(powOutput, sampleCount);// Find the masking function
}
*/
|