1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
|
/*
* Copyright (c) 2018, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* CRF Listener example.
*
* This example implements a very simple CRF listener application which receives
* CRF packets from the network and recovers media clock.
* Additionally, it operates as AAF listener or AAF talker according to the
* operation mode option passed via command-line argument.
*
* When operating as AAF talker, it sends dummy AAF packets with presentation
* time that align with the reference clock. AAF packets are sent only after
* the first CRF packet is received.
*
* When operating as AAF listener, it receives AAF packets and checks if their
* presentation time is aligned with the clock reference provided by the CRF
* stream.
*
* Note that the application running on AAF listener mode should be started
* before the application running on AAF talker mode so the former is able to
* recover the media clock and check for AAF stream alignment.
*
* TSN stream parameters (e.g. destination mac address and mode) are passed
* via command-line arguments. Run 'crf-listener --help' for more information.
*
* This example relies on the system clock to keep the transmission interval
* when operating in AAF talker mode. So make sure the system clock is
* synchronized with PTP time. For further information on how to synchronize
* those clocks see ptp4l(8) and phc2sys(8) man pages. Additionally, make sure
* you have configured FQTSS feature from your NIC according (for further
* information see tc-cbs(8)).
*
* Below we provide an example to setup ptp4l, phc2sys and to configure
* the qdiscs to transmit an AAF stream with 48 kHz sampling rate, 16-bit
* sample size, stereo.
*
* On PTP slave host: Replace $IFNAME by your PTP capable NIC name. The
* gPTP.cfg file mentioned below can be found in /usr/share/doc/linuxptp/
* (depending on your distro).
* $ ptp4l -f gPTP.cfg -i $IFNAME -s
* $ phc2sys -f gPTP.cfg -a -r
*
* Configure mpqrio (replace $HANDLE_ID by an unused handle ID):
* $ tc qdisc add dev $IFNAME parent root handle $HANDLE_ID mqprio \
* num_tc 3 map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
* queues 1@0 1@1 2@2 hw 0
*
* Configure cbs:
* $ tc qdisc replace dev $IFNAME parent $HANDLE_ID:1 cbs idleslope 5760 \
* sendslope -994240 hicredit 9 locredit -89 offload 1
*
* Finally, the AAF listener mode implemented by this example application is
* limited and doesn't work with multiple AAF talkers.
*/
#include <assert.h>
#include <argp.h>
#include <arpa/inet.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <poll.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/timerfd.h>
#include <unistd.h>
#include <math.h>
#include <inttypes.h>
#include "avtp.h"
#include "avtp_crf.h"
#include "avtp_aaf.h"
#include "examples/common.h"
#define AAF_STREAM_ID 0xAABBCCDDEEFF0001
#define AAF_NUM_SAMPLES 6 /* Number of samples per packet. */
#define AAF_SAMPLE_SIZE 2 /* Sample size in bytes. */
#define AAF_NUM_CHANNELS 2 /* Number of channels per frame */
#define AAF_DATA_LEN (AAF_NUM_SAMPLES * AAF_SAMPLE_SIZE * AAF_NUM_CHANNELS)
#define AAF_PDU_SIZE (sizeof(struct avtp_stream_pdu) + AAF_DATA_LEN)
#define AAF_SAMPLE_RATE 48000
#define CRF_STREAM_ID 0xAABBCCDDEEFF0002
/* Values based on Spec 1722 Table 28 recommendation. */
#define CRF_SAMPLE_RATE 48000
#define CRF_TIMESTAMPS_PER_SEC 300
#define TIMESTAMPS_PER_PKT 6
#define CRF_DATA_LEN (sizeof(uint64_t) * TIMESTAMPS_PER_PKT)
#define CRF_PDU_SIZE (sizeof(struct avtp_crf_pdu) + CRF_DATA_LEN)
#define MAX_PDU_SIZE MAX(AAF_PDU_SIZE, CRF_PDU_SIZE)
#define TIME_PERIOD_NS ((double)NSEC_PER_SEC / CRF_SAMPLE_RATE)
#define AAF_PERIOD (NSEC_PER_SEC * AAF_NUM_SAMPLES / AAF_SAMPLE_RATE)
#define MCLK_PERIOD AAF_PERIOD
#define MCLKLIST_TS_PER_CRF (CRF_SAMPLE_RATE / CRF_TIMESTAMPS_PER_SEC)
#define NSEC_PER_SEC 1000000000ULL
#define NSEC_PER_MSEC 1000000ULL
struct media_clock_entry {
STAILQ_ENTRY(media_clock_entry) mclk_entries;
uint64_t timestamp;
};
static enum {
MODE_TALKER,
MODE_LISTENER,
} mode;
static char ifname[IFNAMSIZ];
static uint8_t crf_macaddr[ETH_ALEN];
static uint8_t aaf_macaddr[ETH_ALEN];
static int priority = -1;
static int mtt;
static bool prev_state;
static bool first_aaf_pdu = true;
static bool need_mclk_lookup = true;
static uint8_t crf_seq_num;
static uint8_t aaf_seq_num;
static uint64_t prev_mclk_timestamp, rounded_mtt;
static STAILQ_HEAD(timestamp_queue, media_clock_entry) mclk_timestamps;
static struct argp_option options[] = {
{"crf-addr", 'c', "MACADDR", 0, "CRF Stream Destination MAC address" },
{"aaf-addr", 'a', "MACADDR", 0, "AAF Stream Destination MAC address" },
{"ifname", 'i', "IFNAME", 0, "Network Interface" },
{"prio", 'p', "NUM", 0, "SO_PRIORITY to be set in AAF stream" },
{"mtt", 'm', "MSEC", 0, "Max Transit time from AAF stream (in ms)" },
{"mode", 'o', "talker|listener", 0, "AAF operation mode"},
{ 0 }
};
static error_t parser(int key, char *arg, struct argp_state *state)
{
int res;
switch (key) {
case 'c':
res = sscanf(arg, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&crf_macaddr[0], &crf_macaddr[1], &crf_macaddr[2],
&crf_macaddr[3], &crf_macaddr[4], &crf_macaddr[5]);
if (res != 6) {
fprintf(stderr, "Invalid CRF address\n");
exit(EXIT_FAILURE);
}
break;
case 'a':
res = sscanf(arg, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&aaf_macaddr[0], &aaf_macaddr[1], &aaf_macaddr[2],
&aaf_macaddr[3], &aaf_macaddr[4], &aaf_macaddr[5]);
if (res != 6) {
fprintf(stderr, "Invalid AAF address\n");
exit(EXIT_FAILURE);
}
break;
case 'm':
mtt = atoi(arg) * NSEC_PER_MSEC;
break;
case 'i':
strncpy(ifname, arg, sizeof(ifname) - 1);
break;
case 'p':
priority = atoi(arg);
break;
case 'o':
if (strcmp(arg, "talker") == 0)
mode = MODE_TALKER;
else if (strcmp(arg, "listener") == 0)
mode = MODE_LISTENER;
else {
fprintf(stderr, "Invalid mode\n");
exit(EXIT_FAILURE);
}
break;
}
return 0;
}
static struct argp argp = { options, parser };
static uint64_t mclk_dequeue_ts(void)
{
uint64_t mclk_timestamp;
struct media_clock_entry *mclk_entry;
mclk_entry = STAILQ_FIRST(&mclk_timestamps);
mclk_timestamp = mclk_entry->timestamp;
STAILQ_REMOVE_HEAD(&mclk_timestamps, mclk_entries);
free(mclk_entry);
return mclk_timestamp;
}
static int mclk_enqueue_ts(uint64_t ts)
{
struct media_clock_entry *mclk_entry;
mclk_entry = malloc(sizeof(*mclk_entry));
if (!mclk_entry) {
fprintf(stderr, "Failed to allocate memory\n");
return -1;
}
mclk_entry->timestamp = ts;
STAILQ_INSERT_TAIL(&mclk_timestamps, mclk_entry, mclk_entries);
return 0;
}
static uint64_t get_next_mclk_timestamp(void)
{
uint64_t mclk_timestamp;
if (STAILQ_EMPTY(&mclk_timestamps)) {
mclk_timestamp = prev_mclk_timestamp + MCLK_PERIOD;
need_mclk_lookup = true;
} else {
mclk_timestamp = mclk_dequeue_ts();
}
prev_mclk_timestamp = mclk_timestamp;
return mclk_timestamp;
}
static uint64_t mclk_lookup(uint32_t avtp_time)
{
uint64_t mclk_timestamp = get_next_mclk_timestamp();
while (mclk_timestamp % (1ULL << 32) != avtp_time)
mclk_timestamp = get_next_mclk_timestamp();
return mclk_timestamp;
}
static bool is_valid_crf_pdu(struct avtp_crf_pdu *pdu)
{
int res;
uint32_t val32;
uint64_t val64;
struct avtp_common_pdu *common = (struct avtp_common_pdu *) pdu;
res = avtp_pdu_get(common, AVTP_FIELD_SUBTYPE, &val32);
if (res < 0) {
fprintf(stderr, "Failed to get CRF subtype field: %d\n", res);
return false;
}
if (val32 != AVTP_SUBTYPE_CRF)
return false;
res = avtp_pdu_get(common, AVTP_FIELD_VERSION, &val32);
if (res < 0) {
fprintf(stderr, "Failed to get CRF version field: %d\n", res);
return false;
}
if (val32 != 0) {
fprintf(stderr, "CRF: Version mismatch: expected %u, got %u\n",
0, val32);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_SV, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF sv field: %d\n", res);
return false;
}
if (val64 != 1) {
fprintf(stderr, "CRF: sv mismatch: expected %u, got %" PRIu64 "\n",
1, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_FS, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF fs field: %d\n", res);
return false;
}
if (val64 != 0) {
fprintf(stderr, "CRF: fs mismatch: expected %u, got %" PRIu64 "\n",
0, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_SEQ_NUM, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF sequence num field: %d\n",
res);
return false;
}
if (val64 != crf_seq_num) {
/* If we have a sequence number mismatch, we simply log the
* issue and continue to process the packet. We don't want to
* invalidate it since it is a valid packet after all.
*/
fprintf(stderr, "CRF: Sequence number mismatch: expected %u, got %" PRIu64 "\n",
crf_seq_num, val64);
crf_seq_num = val64;
}
crf_seq_num++;
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_TYPE, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF format field: %d\n", res);
return false;
}
if (val64 != AVTP_CRF_TYPE_AUDIO_SAMPLE) {
fprintf(stderr, "CRF: Format mismatch: expected %u, got %" PRIu64 "\n",
AVTP_CRF_TYPE_AUDIO_SAMPLE, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_STREAM_ID, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF stream ID field: %d\n",
res);
return false;
}
if (val64 != CRF_STREAM_ID) {
fprintf(stderr, "CRF: Stream ID mismatch: expected %" PRIu64 ", got %" PRIu64 "\n",
CRF_STREAM_ID, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_PULL, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF multiplier modifier field: %d\n",
res);
return false;
}
if (val64 != AVTP_CRF_PULL_MULT_BY_1) {
fprintf(stderr, "CRF Pull mismatch: expected %u, got %" PRIu64 "\n",
AVTP_CRF_PULL_MULT_BY_1, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_BASE_FREQ, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF base frequency field: %d\n",
res);
return false;
}
if (val64 != CRF_SAMPLE_RATE) {
fprintf(stderr, "CRF Base frequency: expected %u, got %" PRIu64 "\n",
CRF_SAMPLE_RATE, val64);
return false;
}
res = avtp_crf_pdu_get(pdu, AVTP_CRF_FIELD_CRF_DATA_LEN, &val64);
if (res < 0) {
fprintf(stderr, "Failed to get CRF data length field: %d\n",
res);
return false;
}
if (val64 != CRF_DATA_LEN) {
fprintf(stderr, "CRF Data length mismatch: expected %zu, got %" PRIu64 "\n",
CRF_DATA_LEN, val64);
return false;
}
return true;
}
static bool is_valid_aaf_pdu(struct avtp_stream_pdu *pdu)
{
struct avtp_common_pdu *common = (struct avtp_common_pdu *) pdu;
uint64_t val64;
uint32_t val32;
int res;
res = avtp_pdu_get(common, AVTP_FIELD_VERSION, &val32);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get version field: %d\n", res);
return false;
}
if (val32 != 0) {
fprintf(stderr, "AAF: Version mismatch: expected %u, got %u\n",
0, val32);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_TV, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get tv field: %d\n", res);
return false;
}
if (val64 != 1) {
fprintf(stderr, "AAF: tv mismatch: expected %u, got %" PRIu64 "\n",
1, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_SP, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get sp field: %d\n", res);
return false;
}
if (val64 != AVTP_AAF_PCM_SP_NORMAL) {
fprintf(stderr, "AAF: tv mismatch: expected %u, got %" PRIu64 "\n",
1, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_STREAM_ID, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get stream ID field: %d\n",
res);
return false;
}
if (val64 != AAF_STREAM_ID) {
fprintf(stderr, "AAF: Stream ID mismatch: expected %" PRIu64 ", got %" PRIu64 "\n",
AAF_STREAM_ID, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_SEQ_NUM, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get sequence num field: %d\n",
res);
return false;
}
if (val64 != aaf_seq_num) {
/* If we have a sequence number mismatch, we simply log the
* issue and continue to process the packet. We don't want to
* invalidate it since it is a valid packet after all.
*/
fprintf(stderr, "AAF Sequence number mismatch: expected %u, got %" PRIu64 "\n",
aaf_seq_num, val64);
aaf_seq_num = val64;
}
aaf_seq_num++;
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_FORMAT, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get format field: %d\n", res);
return false;
}
if (val64 != AVTP_AAF_FORMAT_INT_16BIT) {
fprintf(stderr, "AAF: Format mismatch: expected %u, got %" PRIu64 "\n",
AVTP_AAF_FORMAT_INT_16BIT, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_NSR, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get sample rate field: %d\n",
res);
return false;
}
if (val64 != AVTP_AAF_PCM_NSR_48KHZ) {
fprintf(stderr, "AAF: Sample rate mismatch: expected %u, got %" PRIu64 "\n",
AVTP_AAF_PCM_NSR_48KHZ, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_CHAN_PER_FRAME, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get channels field: %d\n",
res);
return false;
}
if (val64 != AAF_NUM_CHANNELS) {
fprintf(stderr, "AAF: Channels mismatch: expected %u, got %" PRIu64 "\n",
AAF_NUM_CHANNELS, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_BIT_DEPTH, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get depth field: %d\n", res);
return false;
}
if (val64 != 16) {
fprintf(stderr, "AAF: Depth mismatch: expected %u, got %" PRIu64 "\n",
16, val64);
return false;
}
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_STREAM_DATA_LEN, &val64);
if (res < 0) {
fprintf(stderr, "AAF: Failed to get data_len field: %d\n",
res);
return false;
}
if (val64 != AAF_DATA_LEN) {
fprintf(stderr, "AAF: Data len mismatch: expected %u, got %" PRIu64 "\n",
AAF_DATA_LEN, val64);
return false;
}
return true;
}
static int init_aaf_pdu(struct avtp_stream_pdu *pdu)
{
int res;
res = avtp_aaf_pdu_init(pdu);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_TV, 1);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_STREAM_ID, AAF_STREAM_ID);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_FORMAT,
AVTP_AAF_FORMAT_INT_16BIT);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_NSR,
AVTP_AAF_PCM_NSR_48KHZ);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_CHAN_PER_FRAME,
AAF_NUM_CHANNELS);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_BIT_DEPTH, 16);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_STREAM_DATA_LEN,
AAF_DATA_LEN);
if (res < 0)
return -1;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_SP,
AVTP_AAF_PCM_SP_NORMAL);
if (res < 0)
return -1;
return 0;
}
static int aaf_talker_tx_timeout(int fd_timer, int fd_sk,
const struct sockaddr_ll *addr,
struct avtp_stream_pdu *pdu)
{
int res;
ssize_t n;
uint64_t expirations;
uint32_t avtp_time = 0;
n = read(fd_timer, &expirations, sizeof(uint64_t));
if (n < 0) {
perror("Failed to read timerfd");
return -1;
}
while (expirations--) {
avtp_time = get_next_mclk_timestamp();
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_TIMESTAMP,
avtp_time);
if (res < 0)
return res;
res = avtp_aaf_pdu_set(pdu, AVTP_AAF_FIELD_SEQ_NUM,
aaf_seq_num++);
if (res < 0)
return res;
n = sendto(fd_sk, pdu, AAF_PDU_SIZE, 0,
(struct sockaddr *) addr,
sizeof(*addr));
if (n < 0) {
perror("Failed to send data");
return -1;
}
if (n != AAF_PDU_SIZE) {
fprintf(stderr, "AAF: wrote %zd bytes, expected %zd\n",
n, AAF_PDU_SIZE);
}
}
return 0;
}
/* This routine generates media clock timestamps using timestamps from CRF
* stream.
*/
static int recover_mclk(struct avtp_crf_pdu *pdu)
{
int res, idx;
uint64_t ts_mclk, ts_crf;
/* For simplicity's sake, we consider only the first timestamp from
* CRF PDU to recover the media clock.
*/
ts_crf = be64toh(pdu->crf_data[0]);
for (idx = 0; idx < MCLKLIST_TS_PER_CRF; idx++) {
ts_mclk = ts_crf + (idx * MCLK_PERIOD);
if (mode == MODE_TALKER) {
/* If we are operating in talker mode, the max transit
* time is added to the recovered timestamp, rounding
* it up to the nearest multiple fo the media clock.
*/
ts_mclk += rounded_mtt;
}
if (ts_mclk <= prev_mclk_timestamp)
/* If the recovered timestamp is less than the
* timestamp from the last AAF pdu received, we discard
* it. This situation happens when the CRF pdu is
* received late and the media clock has already
* freewheeled.
*/
continue;
res = mclk_enqueue_ts(ts_mclk);
if (res < 0)
return res;
}
return 0;
}
static int is_ts_aligned(uint32_t mclk_ts, uint32_t avtp_ts)
{
int n = 0;
int t_offset, delta_ll, delta_hl;
t_offset = avtp_ts - mclk_ts;
delta_ll = (n * TIME_PERIOD_NS) - (TIME_PERIOD_NS/4);
delta_hl = (n * TIME_PERIOD_NS) + (TIME_PERIOD_NS/4);
/* Equation 16 defined in spec 1722:
* ((n * Ps) - Ps/4) < Toffset < ((n * Ps) + Ps/4)
* Toffset: timestamp offset in nanoseconds between the
AVTP Presentation Timestamp of the media stream
and the timestamp of the CRF stream
* n : positive integer chosen for the implementation
* Ps : the sample period of the CRF stream in nanoseconds
*/
if (delta_ll > t_offset || t_offset > delta_hl)
return false;
return true;
}
static int handle_crf_pdu(struct avtp_crf_pdu *pdu)
{
if (!is_valid_crf_pdu(pdu))
return 0;
return recover_mclk(pdu);
}
static int handle_aaf_pdu(struct avtp_stream_pdu *pdu)
{
int res;
bool state;
uint64_t val;
uint32_t avtp_time, mclk_time;
if (!is_valid_aaf_pdu(pdu))
return 0;
res = avtp_aaf_pdu_get(pdu, AVTP_AAF_FIELD_TIMESTAMP, &val);
if (res < 0) {
fprintf(stderr, "Failed to get AVTP time from PDU\n");
return res;
}
avtp_time = val;
if (need_mclk_lookup) {
mclk_time = mclk_lookup(avtp_time);
need_mclk_lookup = false;
} else {
mclk_time = get_next_mclk_timestamp();
}
state = is_ts_aligned(mclk_time, avtp_time);
if (prev_state != state) {
if (state)
printf("AAF Stream is aligned with common media clock\n");
else
printf("AAF Stream is not aligned with common media clock\n");
}
prev_state = state;
return 0;
}
static int aaf_talker_recv_pdu(int fd_sk, int fd_timer)
{
int res;
ssize_t n;
struct avtp_crf_pdu *pdu = alloca(CRF_PDU_SIZE);
memset(pdu, 0, CRF_PDU_SIZE);
n = recv(fd_sk, pdu, CRF_PDU_SIZE, 0);
if (n < 0) {
perror("Failed to receive data");
return -1;
}
/* The protocol type from rx socket is set to ETH_P_ALL so we receive
* non-AVTP packets as well. In order to filter out those packets, we
* check the number of bytes received. If it doesn't match the CRF pdu
* size we drop the packet.
*/
if (n != CRF_PDU_SIZE)
return 0;
res = handle_crf_pdu(pdu);
if (res < 0)
return -1;
/* Arm the timer for the first time to start sending AAF stream. */
if (first_aaf_pdu) {
struct itimerspec itspec = { 0 };
uint64_t ts = mclk_dequeue_ts();
first_aaf_pdu = false;
itspec.it_value.tv_sec = ts / NSEC_PER_SEC;
itspec.it_value.tv_nsec = ts % NSEC_PER_SEC;
itspec.it_interval.tv_sec = 0;
itspec.it_interval.tv_nsec = AAF_PERIOD;
res = timerfd_settime(fd_timer, TFD_TIMER_ABSTIME, &itspec,
NULL);
if (res < 0) {
perror("Failed to set timer");
return -1;
}
}
return 0;
}
static int aaf_listener_recv_pdu(int fd)
{
int res;
ssize_t n;
uint32_t val;
void *pdu = alloca(MAX_PDU_SIZE);
struct avtp_common_pdu *common = (struct avtp_common_pdu *) pdu;
memset(pdu, 0, MAX_PDU_SIZE);
n = recv(fd, pdu, MAX_PDU_SIZE, 0);
if (n < 0) {
perror("Failed to receive data");
return -1;
}
/* The protocol type from rx socket is set to ETH_P_ALL so we receive
* non-AVTP packets as well. In order to filter out those packets, we
* check the number of bytes received. If it doesn't match the CRF or
* AAF pdu size we drop the packet.
*/
if (n != AAF_PDU_SIZE && n != CRF_PDU_SIZE)
return 0;
res = avtp_pdu_get(common, AVTP_FIELD_SUBTYPE, &val);
if (res < 0) {
fprintf(stderr, "Failed to get subtype field: %d\n", res);
return -1;
}
switch (val) {
case AVTP_SUBTYPE_CRF:
res = handle_crf_pdu(pdu);
break;
case AVTP_SUBTYPE_AAF:
res = handle_aaf_pdu(pdu);
break;
}
return res;
}
static int setup_rx_socket(void)
{
int res, fd;
struct ifreq req = {0};
struct packet_mreq mreq = {0};
/* In case this example is running on the same host where crf-talker is
* running, we set protocol type to ETH_P_ALL to allow CRF traffic to
* loop back.
*/
fd = create_listener_socket(ifname, crf_macaddr, ETH_P_ALL);
if (fd < 0) {
perror("Failed to open socket");
return -1;
}
if (mode == MODE_LISTENER) {
snprintf(req.ifr_name, sizeof(req.ifr_name), "%s", ifname);
res = ioctl(fd, SIOCGIFINDEX, &req);
if (res < 0) {
perror("Failed to get interface index");
goto err;
}
mreq.mr_ifindex = req.ifr_ifindex;
mreq.mr_type = PACKET_MR_MULTICAST;
mreq.mr_alen = ETH_ALEN;
memcpy(&mreq.mr_address, aaf_macaddr, ETH_ALEN);
res = setsockopt(fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, &mreq,
sizeof(struct packet_mreq));
if (res < 0) {
perror("Couldn't add membership for AAF stream");
goto err;
}
}
return fd;
err:
close(fd);
return -1;
}
static int aaf_talker(int fd_rx)
{
int res, fd_tx, fd_timer;
struct pollfd poll_fd[2];
struct sockaddr_ll sk_addr = {0};
struct ifreq req = {0};
struct avtp_stream_pdu *pdu;
fd_tx = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_TSN));
if (fd_tx < 0) {
perror("Failed to open socket");
return -1;
}
if (priority != -1) {
res = setsockopt(fd_tx, SOL_SOCKET, SO_PRIORITY, &priority,
sizeof(priority));
if (res < 0) {
perror("Failed to set priority");
goto fd_tx_close;
}
}
snprintf(req.ifr_name, sizeof(req.ifr_name), "%s", ifname);
res = ioctl(fd_tx, SIOCGIFINDEX, &req);
if (res < 0) {
perror("Failed to get interface index");
goto fd_tx_close;
}
sk_addr.sll_family = AF_PACKET;
sk_addr.sll_protocol = htons(ETH_P_TSN);
sk_addr.sll_halen = ETH_ALEN;
sk_addr.sll_ifindex = req.ifr_ifindex;
memcpy(&sk_addr.sll_addr, aaf_macaddr, ETH_ALEN);
fd_timer = timerfd_create(CLOCK_REALTIME, 0);
if (fd_timer < 0)
goto fd_tx_close;
pdu = alloca(AAF_PDU_SIZE);
res = init_aaf_pdu(pdu);
if (res < 0)
goto fd_timer_close;
memset(pdu->avtp_payload, 0, AAF_DATA_LEN);
poll_fd[0].fd = fd_rx;
poll_fd[0].events = POLLIN;
poll_fd[1].fd = fd_timer;
poll_fd[1].events = POLLIN;
while (1) {
res = poll(poll_fd, 2, -1);
if (res < 0) {
perror("Failed to poll() fds");
goto fd_timer_close;
}
if (poll_fd[0].revents & POLLIN) {
res = aaf_talker_recv_pdu(fd_rx, fd_timer);
if (res < 0)
goto fd_timer_close;
}
if (poll_fd[1].revents & POLLIN) {
res = aaf_talker_tx_timeout(fd_timer, fd_tx, &sk_addr,
pdu);
if (res < 0)
goto fd_timer_close;
}
}
close(fd_timer);
close(fd_tx);
return 0;
fd_timer_close:
close(fd_timer);
fd_tx_close:
close(fd_tx);
return 1;
}
static int aaf_listener(int fd_rx)
{
int res;
while (1) {
res = aaf_listener_recv_pdu(fd_rx);
if (res < 0)
return -1;
}
}
int main(int argc, char *argv[])
{
int fd_rx;
argp_parse(&argp, argc, argv, 0, NULL, NULL);
STAILQ_INIT(&mclk_timestamps);
rounded_mtt = ceil((double)mtt / MCLK_PERIOD) * MCLK_PERIOD;
fd_rx = setup_rx_socket();
if (fd_rx < 0)
return 1;
switch (mode) {
case MODE_LISTENER:
aaf_listener(fd_rx);
break;
case MODE_TALKER:
aaf_talker(fd_rx);
break;
}
close(fd_rx);
return 0;
}
|