1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/*
* Copyright (c) 2019, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* CVF Talker example.
*
* This example implements a very simple CVF talker application which reads
* an H.264 byte-stream from stdin, creates CVF packets and transmit them via
* network.
*
* For simplicity, this example supports only NAL units in byte-stream format,
* and each NAL unit can not exceed 1400 bytes.
*
* TSN stream parameters (e.g. destination mac address, traffic priority) are
* passed via command-line arguments. Run 'cvf-talker --help' for more
* information.
*
* In order to have this example working properly, make sure you have
* configured FQTSS feature from your NIC according (for further information
* see tc-cbs(8)). Also, this example relies on system clock to set the AVTP
* timestamp so make sure it is synchronized with the PTP Hardware Clock (PHC)
* from your NIC and that the PHC is synchronized with the network clock. For
* further information see ptp4l(8) and phc2sys(8).
*
* The easiest way to use this example is by combining it with a GStreamer
* pipeline. We use GStreamer to provide an H.264 stream that is sent to
* stdout, from where this example reads the stream. So, to generate
* an H.264 video to send via TSN network, you can do something like:
*
* $ gst-launch-1.0 -e -q videotestsrc pattern=ball \
* ! video/x-raw,width=192,height=144 ! x264enc \
* ! video/x-h264,stream-format=byte-stream ! filesink location=/dev/stdout \
* | cvf-talker <args>
*
* Note that the `x264enc` may be changed by any other H.264 encoder
* available, as long as it generates a byte-stream with NAL units no longer
* than 1400 bytes.
*/
#include <alloca.h>
#include <argp.h>
#include <arpa/inet.h>
#include <assert.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "avtp.h"
#include "avtp_cvf.h"
#include "examples/common.h"
#define STREAM_ID 0xAABBCCDDEEFF0001
#define DATA_LEN 1400
#define AVTP_H264_HEADER_LEN (sizeof(uint32_t))
#define AVTP_FULL_HEADER_LEN (sizeof(struct avtp_stream_pdu) + AVTP_H264_HEADER_LEN)
#define MAX_PDU_SIZE (AVTP_FULL_HEADER_LEN + DATA_LEN)
static char ifname[IFNAMSIZ];
static uint8_t macaddr[ETH_ALEN];
static int priority = -1;
static int max_transit_time;
static char buffer[MAX_PDU_SIZE * 2];
static size_t buffer_level;
static uint8_t seq_num;
enum process_result {PROCESS_OK, PROCESS_NONE, PROCESS_ERROR};
static struct argp_option options[] = {
{"dst-addr", 'd', "MACADDR", 0, "Stream Destination MAC address" },
{"ifname", 'i', "IFNAME", 0, "Network Interface" },
{"max-transit-time", 'm', "MSEC", 0, "Maximum Transit Time in ms" },
{"prio", 'p', "NUM", 0, "SO_PRIORITY to be set in socket" },
{ 0 }
};
static error_t parser(int key, char *arg, struct argp_state *state)
{
int res;
switch (key) {
case 'd':
res = sscanf(arg, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&macaddr[0], &macaddr[1], &macaddr[2],
&macaddr[3], &macaddr[4], &macaddr[5]);
if (res != 6) {
fprintf(stderr, "Invalid address\n");
exit(EXIT_FAILURE);
}
break;
case 'i':
strncpy(ifname, arg, sizeof(ifname) - 1);
break;
case 'm':
max_transit_time = atoi(arg);
break;
case 'p':
priority = atoi(arg);
break;
}
return 0;
}
static struct argp argp = { options, parser };
static int init_pdu(struct avtp_stream_pdu *pdu)
{
int res;
res = avtp_cvf_pdu_init(pdu, AVTP_CVF_FORMAT_SUBTYPE_H264);
if (res < 0)
return -1;
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_TV, 1);
if (res < 0)
return -1;
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_STREAM_ID, STREAM_ID);
if (res < 0)
return -1;
/* Just state that all data is part of the frame (M=1) */
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_M, 1);
if (res < 0)
return -1;
/* No H.264 timestamp now */
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_H264_TIMESTAMP, 0);
if (res < 0)
return -1;
/* No H.264 timestamp means no PTV */
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_H264_PTV, 0);
if (res < 0)
return -1;
return 0;
}
static ssize_t fill_buffer(void)
{
ssize_t n;
n = read(STDIN_FILENO, buffer + buffer_level,
sizeof(buffer) - buffer_level);
if (n < 0) {
perror("Could not read from standard input");
}
buffer_level += n;
return n;
}
static ssize_t start_code_position(size_t offset)
{
assert(offset < buffer_level);
/* Simplified Boyer-Moore, inspired by gstreamer */
while (offset < buffer_level - 2) {
if (buffer[offset + 2] == 0x1) {
if (buffer[offset] == 0x0 && buffer[offset + 1] == 0x0)
return offset;
offset += 3;
} else if (buffer[offset + 2] == 0x0) {
offset++;
} else {
offset += 3;
}
}
return -1;
}
static int prepare_packet(struct avtp_stream_pdu *pdu, char *nal_data,
size_t nal_data_len)
{
int res;
uint32_t avtp_time;
struct avtp_cvf_h264_payload *h264_pay =
(struct avtp_cvf_h264_payload *) pdu->avtp_payload;
res = calculate_avtp_time(&avtp_time, max_transit_time);
if (res < 0) {
fprintf(stderr, "Failed to calculate avtp time\n");
return -1;
}
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_TIMESTAMP,
avtp_time);
if (res < 0)
return -1;
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_SEQ_NUM, seq_num++);
if (res < 0)
return -1;
/* Stream data len includes AVTP H264 header, as this is part
* of the payload too*/
res = avtp_cvf_pdu_set(pdu, AVTP_CVF_FIELD_STREAM_DATA_LEN,
nal_data_len + AVTP_H264_HEADER_LEN);
if (res < 0)
return -1;
memcpy(h264_pay->h264_data, nal_data, nal_data_len);
return 0;
}
static int process_nal(struct avtp_stream_pdu *pdu, bool process_last,
size_t *nal_len)
{
int res;
ssize_t start, end;
*nal_len = 0;
start = start_code_position(0);
if (start == -1) {
fprintf(stderr, "Unable to find NAL start\n");
return PROCESS_NONE;
}
/* Now, let's find where the next starts. This is where current ends */
end = start_code_position(start + 1);
if (end == -1) {
if (process_last == false) {
return PROCESS_NONE;
} else {
end = buffer_level;
}
}
*nal_len = end - start;
if (*nal_len > DATA_LEN) {
fprintf(stderr, "NAL length bigger than expected. Expected %u, "
"found %zd\n", DATA_LEN, *nal_len);
goto err;
}
/* Sets AVTP packet headers and content - the NAL unit */
res = prepare_packet(pdu, &buffer[start], *nal_len);
if (res < 0) {
goto err;
}
/* Finally, let's offset any remaining data on the buffer to the
* beginning. Not really efficient, but keep things simple */
memmove(buffer, buffer + end, buffer_level - end);
buffer_level -= end;
return PROCESS_OK;
err:
return PROCESS_ERROR;
}
int main(int argc, char *argv[])
{
int fd, res;
struct sockaddr_ll sk_addr;
struct avtp_stream_pdu *pdu = alloca(MAX_PDU_SIZE);
argp_parse(&argp, argc, argv, 0, NULL, NULL);
fd = create_talker_socket(priority);
if (fd < 0)
return 1;
res = setup_socket_address(fd, ifname, macaddr, ETH_P_TSN, &sk_addr);
if (res < 0)
goto err;
res = init_pdu(pdu);
if (res < 0)
goto err;
while (1) {
ssize_t n;
bool end = false;
n = fill_buffer();
if (n == 0)
end = true;
while (buffer_level > 0) {
enum process_result pr =
process_nal(pdu, end, (size_t *)&n);
if (pr == PROCESS_ERROR)
goto err;
if (pr == PROCESS_NONE)
break;
n = sendto(fd, pdu, AVTP_FULL_HEADER_LEN + n, 0,
(struct sockaddr *) &sk_addr, sizeof(sk_addr));
if (n < 0) {
perror("Failed to send data");
goto err;
}
}
if (end)
break;
}
close(fd);
return 0;
err:
close(fd);
return 1;
}
|