1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
|
#include <limits.h>
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "bigWig.h"
#include "bwCommon.h"
/// @cond SKIP
struct val_t {
uint32_t tid;
uint32_t start;
uint32_t nBases;
float min, max, sum, sumsq;
double scalar;
struct val_t *next;
};
/// @endcond
//Create a chromList_t and attach it to a bigWigFile_t *. Returns NULL on error
//Note that chroms and lengths are duplicated, so you MUST free the input
chromList_t *bwCreateChromList(char **chroms, uint32_t *lengths, int64_t n) {
int64_t i = 0;
chromList_t *cl = calloc(1, sizeof(chromList_t));
if(!cl) return NULL;
cl->nKeys = n;
cl->chrom = malloc(sizeof(char*)*n);
cl->len = malloc(sizeof(uint32_t)*n);
if(!cl->chrom) goto error;
if(!cl->len) goto error;
for(i=0; i<n; i++) {
cl->len[i] = lengths[i];
cl->chrom[i] = strdup(chroms[i]);
if(!cl->chrom[i]) goto error;
}
return cl;
error:
if(i) {
int64_t j;
for(j=0; j<i; j++) free(cl->chrom[j]);
}
if(cl) {
if(cl->chrom) free(cl->chrom);
if(cl->len) free(cl->len);
free(cl);
}
return NULL;
}
//If maxZooms == 0, then 0 is used (i.e., there are no zoom levels). If maxZooms < 0 or > 65535 then 10 is used.
//TODO allow changing bufSize and blockSize
int bwCreateHdr(bigWigFile_t *fp, int32_t maxZooms) {
if(!fp->isWrite) return 1;
bigWigHdr_t *hdr = calloc(1, sizeof(bigWigHdr_t));
if(!hdr) return 2;
hdr->version = 4;
if(maxZooms < 0 || maxZooms > 65535) {
hdr->nLevels = 10;
} else {
hdr->nLevels = maxZooms;
}
hdr->bufSize = 32768; //When the file is finalized this is reset if fp->writeBuffer->compressPsz is 0!
hdr->minVal = DBL_MAX;
hdr->maxVal = DBL_MIN;
fp->hdr = hdr;
fp->writeBuffer->blockSize = 64;
//Allocate the writeBuffer buffers
fp->writeBuffer->compressPsz = compressBound(hdr->bufSize);
fp->writeBuffer->compressP = malloc(fp->writeBuffer->compressPsz);
if(!fp->writeBuffer->compressP) return 3;
fp->writeBuffer->p = calloc(1,hdr->bufSize);
if(!fp->writeBuffer->p) return 4;
return 0;
}
//return 0 on success
static int writeAtPos(void *ptr, size_t sz, size_t nmemb, size_t pos, FILE *fp) {
size_t curpos = ftell(fp);
if(fseek(fp, pos, SEEK_SET)) return 1;
if(fwrite(ptr, sz, nmemb, fp) != nmemb) return 2;
if(fseek(fp, curpos, SEEK_SET)) return 3;
return 0;
}
//We lose keySize bytes on error
static int writeChromList(FILE *fp, chromList_t *cl) {
uint16_t k;
uint32_t j, magic = CIRTREE_MAGIC;
uint32_t nperblock = (cl->nKeys > 0x7FFF) ? 0x7FFF : cl->nKeys; //Items per leaf/non-leaf, there are no unsigned ints in java :(
uint32_t nblocks, keySize = 0, valSize = 8; //In theory valSize could be optimized, in practice that'd be annoying
uint64_t i, nonLeafEnd, leafSize, nextLeaf;
uint8_t eight;
int64_t i64;
char *chrom;
size_t l;
if(cl->nKeys > 1073676289) {
fprintf(stderr, "[writeChromList] Error: Currently only 1,073,676,289 contigs are supported. If you really need more then please post a request on github.\n");
return 1;
}
nblocks = cl->nKeys/nperblock;
nblocks += ((cl->nKeys % nperblock) > 0)?1:0;
for(i64=0; i64<cl->nKeys; i64++) {
l = strlen(cl->chrom[i64]);
if(l>keySize) keySize = l;
}
l--; //We don't null terminate strings, because schiess mich tot
chrom = calloc(keySize, sizeof(char));
//Write the root node of a largely pointless tree
if(fwrite(&magic, sizeof(uint32_t), 1, fp) != 1) return 1;
if(fwrite(&nperblock, sizeof(uint32_t), 1, fp) != 1) return 2;
if(fwrite(&keySize, sizeof(uint32_t), 1, fp) != 1) return 3;
if(fwrite(&valSize, sizeof(uint32_t), 1, fp) != 1) return 4;
if(fwrite(&(cl->nKeys), sizeof(uint64_t), 1, fp) != 1) return 5;
//Padding?
i=0;
if(fwrite(&i, sizeof(uint64_t), 1, fp) != 1) return 6;
//Do we need a non-leaf node?
if(nblocks > 1) {
eight = 0;
if(fwrite(&eight, sizeof(uint8_t), 1, fp) != 1) return 7;
if(fwrite(&eight, sizeof(uint8_t), 1, fp) != 1) return 8; //padding
if(fwrite(&nblocks, sizeof(uint16_t), 1, fp) != 1) return 8;
nonLeafEnd = ftell(fp) + nperblock * (keySize + 8);
leafSize = nperblock * (keySize + 8) + 4;
for(i=0; i<nblocks; i++) { //Why yes, this is pointless
chrom = strncpy(chrom, cl->chrom[i * nperblock], keySize);
nextLeaf = nonLeafEnd + i * leafSize;
if(fwrite(chrom, keySize, 1, fp) != 1) return 9;
if(fwrite(&nextLeaf, sizeof(uint64_t), 1, fp) != 1) return 10;
}
for(i=0; i<keySize; i++) chrom[i] = '\0';
nextLeaf = 0;
for(i=nblocks; i<nperblock; i++) {
if(fwrite(chrom, keySize, 1, fp) != 1) return 9;
if(fwrite(&nextLeaf, sizeof(uint64_t), 1, fp) != 1) return 10;
}
}
//Write the leaves
nextLeaf = 0;
for(i=0, j=0; i<nblocks; i++) {
eight = 1;
if(fwrite(&eight, sizeof(uint8_t), 1, fp) != 1) return 11;
eight = 0;
if(fwrite(&eight, sizeof(uint8_t), 1, fp) != 1) return 12;
if(cl->nKeys - j < nperblock) {
k = cl->nKeys - j;
if(fwrite(&k, sizeof(uint16_t), 1, fp) != 1) return 13;
} else {
if(fwrite(&nperblock, sizeof(uint16_t), 1, fp) != 1) return 13;
}
for(k=0; k<nperblock; k++) {
if(j>=cl->nKeys) {
if(chrom[0]) {
for(l=0; l<keySize; l++) chrom[l] = '\0';
}
if(fwrite(chrom, keySize, 1, fp) != 1) return 15;
if(fwrite(&nextLeaf, sizeof(uint64_t), 1, fp) != 1) return 16;
} else {
chrom = strncpy(chrom, cl->chrom[j], keySize);
if(fwrite(chrom, keySize, 1, fp) != 1) return 15;
if(fwrite(&j, sizeof(uint32_t), 1, fp) != 1) return 16;
if(fwrite(&(cl->len[j++]), sizeof(uint32_t), 1, fp) != 1) return 17;
}
}
}
free(chrom);
return 0;
}
//returns 0 on success
//Still need to fill in indexOffset
int bwWriteHdr(bigWigFile_t *bw) {
uint32_t magic = BIGWIG_MAGIC;
uint16_t two = 4;
FILE *fp;
void *p = calloc(58, sizeof(uint8_t)); //58 bytes of nothing
if(!bw->isWrite) return 1;
//The header itself, largely just reserving space...
fp = bw->URL->x.fp;
if(!fp) return 2;
if(fseek(fp, 0, SEEK_SET)) return 3;
if(fwrite(&magic, sizeof(uint32_t), 1, fp) != 1) return 4;
if(fwrite(&two, sizeof(uint16_t), 1, fp) != 1) return 5;
if(fwrite(p, sizeof(uint8_t), 58, fp) != 58) return 6;
//Empty zoom headers
if(bw->hdr->nLevels) {
for(two=0; two<bw->hdr->nLevels; two++) {
if(fwrite(p, sizeof(uint8_t), 24, fp) != 24) return 9;
}
}
//Update summaryOffset and write an empty summary block
bw->hdr->summaryOffset = ftell(fp);
if(fwrite(p, sizeof(uint8_t), 40, fp) != 40) return 10;
if(writeAtPos(&(bw->hdr->summaryOffset), sizeof(uint64_t), 1, 0x2c, fp)) return 11;
//Write the chromosome list as a stupid freaking tree (because let's TREE ALL THE THINGS!!!)
bw->hdr->ctOffset = ftell(fp);
if(writeChromList(fp, bw->cl)) return 7;
if(writeAtPos(&(bw->hdr->ctOffset), sizeof(uint64_t), 1, 0x8, fp)) return 8;
//Update the dataOffset
bw->hdr->dataOffset = ftell(fp);
if(writeAtPos(&bw->hdr->dataOffset, sizeof(uint64_t), 1, 0x10, fp)) return 12;
//Save space for the number of blocks
if(fwrite(p, sizeof(uint8_t), 8, fp) != 8) return 13;
free(p);
return 0;
}
static int insertIndexNode(bigWigFile_t *fp, bwRTreeNode_t *leaf) {
bwLL *l = malloc(sizeof(bwLL));
if(!l) return 1;
l->node = leaf;
l->next = NULL;
if(!fp->writeBuffer->firstIndexNode) {
fp->writeBuffer->firstIndexNode = l;
} else {
fp->writeBuffer->currentIndexNode->next = l;
}
fp->writeBuffer->currentIndexNode = l;
return 0;
}
//0 on success
static int appendIndexNodeEntry(bigWigFile_t *fp, uint32_t tid0, uint32_t tid1, uint32_t start, uint32_t end, uint64_t offset, uint64_t size) {
bwLL *n = fp->writeBuffer->currentIndexNode;
if(!n) return 1;
if(n->node->nChildren >= fp->writeBuffer->blockSize) return 2;
n->node->chrIdxStart[n->node->nChildren] = tid0;
n->node->baseStart[n->node->nChildren] = start;
n->node->chrIdxEnd[n->node->nChildren] = tid1;
n->node->baseEnd[n->node->nChildren] = end;
n->node->dataOffset[n->node->nChildren] = offset;
n->node->x.size[n->node->nChildren] = size;
n->node->nChildren++;
return 0;
}
//Returns 0 on success
static int addIndexEntry(bigWigFile_t *fp, uint32_t tid0, uint32_t tid1, uint32_t start, uint32_t end, uint64_t offset, uint64_t size) {
bwRTreeNode_t *node;
if(appendIndexNodeEntry(fp, tid0, tid1, start, end, offset, size)) {
//The last index node is full, we need to add a new one
node = calloc(1, sizeof(bwRTreeNode_t));
if(!node) return 1;
//Allocate and set the fields
node->isLeaf = 1;
node->nChildren = 1;
node->chrIdxStart = malloc(sizeof(uint32_t)*fp->writeBuffer->blockSize);
if(!node->chrIdxStart) goto error;
node->baseStart = malloc(sizeof(uint32_t)*fp->writeBuffer->blockSize);
if(!node->baseStart) goto error;
node->chrIdxEnd = malloc(sizeof(uint32_t)*fp->writeBuffer->blockSize);
if(!node->chrIdxEnd) goto error;
node->baseEnd = malloc(sizeof(uint32_t)*fp->writeBuffer->blockSize);
if(!node->baseEnd) goto error;
node->dataOffset = malloc(sizeof(uint64_t)*fp->writeBuffer->blockSize);
if(!node->dataOffset) goto error;
node->x.size = malloc(sizeof(uint64_t)*fp->writeBuffer->blockSize);
if(!node->x.size) goto error;
node->chrIdxStart[0] = tid0;
node->baseStart[0] = start;
node->chrIdxEnd[0] = tid1;
node->baseEnd[0] = end;
node->dataOffset[0] = offset;
node->x.size[0] = size;
if(insertIndexNode(fp, node)) goto error;
}
return 0;
error:
if(node->chrIdxStart) free(node->chrIdxStart);
if(node->baseStart) free(node->baseStart);
if(node->chrIdxEnd) free(node->chrIdxEnd);
if(node->baseEnd) free(node->baseEnd);
if(node->dataOffset) free(node->dataOffset);
if(node->x.size) free(node->x.size);
return 2;
}
/*
* TODO:
* The buffer size and compression sz need to be determined elsewhere (and p and compressP filled in!)
*/
static int flushBuffer(bigWigFile_t *fp) {
bwWriteBuffer_t *wb = fp->writeBuffer;
uLongf sz = wb->compressPsz;
uint16_t nItems;
if(!fp->writeBuffer->l) return 0;
if(!wb->ltype) return 0;
//Fill in the header
if(!memcpy(wb->p, &(wb->tid), sizeof(uint32_t))) return 1;
if(!memcpy(wb->p+4, &(wb->start), sizeof(uint32_t))) return 2;
if(!memcpy(wb->p+8, &(wb->end), sizeof(uint32_t))) return 3;
if(!memcpy(wb->p+12, &(wb->step), sizeof(uint32_t))) return 4;
if(!memcpy(wb->p+16, &(wb->span), sizeof(uint32_t))) return 5;
if(!memcpy(wb->p+20, &(wb->ltype), sizeof(uint8_t))) return 6;
//1 byte padding
//Determine the number of items
switch(wb->ltype) {
case 1:
nItems = (wb->l-24)/12;
break;
case 2:
nItems = (wb->l-24)/8;
break;
case 3:
nItems = (wb->l-24)/4;
break;
default:
return 7;
}
if(!memcpy(wb->p+22, &nItems, sizeof(uint16_t))) return 8;
if(sz) {
//compress
if(compress(wb->compressP, &sz, wb->p, wb->l) != Z_OK) return 9;
//write the data to disk
if(fwrite(wb->compressP, sizeof(uint8_t), sz, fp->URL->x.fp) != sz) return 10;
} else {
sz = wb->l;
if(fwrite(wb->p, sizeof(uint8_t), wb->l, fp->URL->x.fp) != wb->l) return 10;
}
//Add an entry into the index
if(addIndexEntry(fp, wb->tid, wb->tid, wb->start, wb->end, bwTell(fp)-sz, sz)) return 11;
wb->nBlocks++;
wb->l = 24;
return 0;
}
static void updateStats(bigWigFile_t *fp, uint32_t span, float val) {
if(val < fp->hdr->minVal) fp->hdr->minVal = val;
else if(val > fp->hdr->maxVal) fp->hdr->maxVal = val;
fp->hdr->nBasesCovered += span;
fp->hdr->sumData += span*val;
fp->hdr->sumSquared += span*pow(val,2);
fp->writeBuffer->nEntries++;
fp->writeBuffer->runningWidthSum += span;
}
//12 bytes per entry
int bwAddIntervals(bigWigFile_t *fp, char **chrom, uint32_t *start, uint32_t *end, float *values, uint32_t n) {
uint32_t tid = 0, i;
char *lastChrom = NULL;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0; //Not an error per se
if(!fp->isWrite) return 1;
if(!wb) return 2;
//Flush if needed
if(wb->ltype != 1) if(flushBuffer(fp)) return 3;
if(wb->l+36 > fp->hdr->bufSize) if(flushBuffer(fp)) return 4;
lastChrom = chrom[0];
tid = bwGetTid(fp, chrom[0]);
if(tid == (uint32_t) -1) return 5;
if(tid != wb->tid) {
if(flushBuffer(fp)) return 6;
wb->tid = tid;
wb->start = start[0];
wb->end = end[0];
}
//Ensure that everything is set correctly
wb->ltype = 1;
if(wb->l <= 24) {
wb->start = start[0];
wb->span = 0;
wb->step = 0;
}
if(!memcpy(wb->p+wb->l, start, sizeof(uint32_t))) return 7;
if(!memcpy(wb->p+wb->l+4, end, sizeof(uint32_t))) return 8;
if(!memcpy(wb->p+wb->l+8, values, sizeof(float))) return 9;
updateStats(fp, end[0]-start[0], values[0]);
wb->l += 12;
for(i=1; i<n; i++) {
if(strcmp(chrom[i],lastChrom) != 0) {
wb->end = end[i-1];
flushBuffer(fp);
lastChrom = chrom[i];
tid = bwGetTid(fp, chrom[i]);
if(tid == (uint32_t) -1) return 10;
wb->tid = tid;
wb->start = start[i];
}
if(wb->l+12 > fp->hdr->bufSize) { //12 bytes/entry
wb->end = end[i-1];
flushBuffer(fp);
wb->start = start[i];
}
if(!memcpy(wb->p+wb->l, &(start[i]), sizeof(uint32_t))) return 11;
if(!memcpy(wb->p+wb->l+4, &(end[i]), sizeof(uint32_t))) return 12;
if(!memcpy(wb->p+wb->l+8, &(values[i]), sizeof(float))) return 13;
updateStats(fp, end[i]-start[i], values[i]);
wb->l += 12;
}
wb->end = end[i-1];
return 0;
}
int bwAppendIntervals(bigWigFile_t *fp, uint32_t *start, uint32_t *end, float *values, uint32_t n) {
uint32_t i;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0;
if(!fp->isWrite) return 1;
if(!wb) return 2;
if(wb->ltype != 1) return 3;
for(i=0; i<n; i++) {
if(wb->l+12 > fp->hdr->bufSize) {
if(i>0) { //otherwise it's already set
wb->end = end[i-1];
}
flushBuffer(fp);
wb->start = start[i];
}
if(!memcpy(wb->p+wb->l, &(start[i]), sizeof(uint32_t))) return 4;
if(!memcpy(wb->p+wb->l+4, &(end[i]), sizeof(uint32_t))) return 5;
if(!memcpy(wb->p+wb->l+8, &(values[i]), sizeof(float))) return 6;
updateStats(fp, end[i]-start[i], values[i]);
wb->l += 12;
}
wb->end = end[i-1];
return 0;
}
//8 bytes per entry
int bwAddIntervalSpans(bigWigFile_t *fp, char *chrom, uint32_t *start, uint32_t span, float *values, uint32_t n) {
uint32_t i, tid;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0;
if(!fp->isWrite) return 1;
if(!wb) return 2;
if(wb->ltype != 2) if(flushBuffer(fp)) return 3;
if(flushBuffer(fp)) return 4;
tid = bwGetTid(fp, chrom);
if(tid == (uint32_t) -1) return 5;
wb->tid = tid;
wb->start = start[0];
wb->step = 0;
wb->span = span;
wb->ltype = 2;
for(i=0; i<n; i++) {
if(wb->l + 8 >= fp->hdr->bufSize) { //8 bytes/entry
if(i) wb->end = start[i-1]+span;
flushBuffer(fp);
wb->start = start[i];
}
if(!memcpy(wb->p+wb->l, &(start[i]), sizeof(uint32_t))) return 5;
if(!memcpy(wb->p+wb->l+4, &(values[i]), sizeof(float))) return 6;
updateStats(fp, span, values[i]);
wb->l += 8;
}
wb->end = start[n-1] + span;
return 0;
}
int bwAppendIntervalSpans(bigWigFile_t *fp, uint32_t *start, float *values, uint32_t n) {
uint32_t i;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0;
if(!fp->isWrite) return 1;
if(!wb) return 2;
if(wb->ltype != 2) return 3;
for(i=0; i<n; i++) {
if(wb->l + 8 >= fp->hdr->bufSize) {
if(i) wb->end = start[i-1]+wb->span;
flushBuffer(fp);
wb->start = start[i];
}
if(!memcpy(wb->p+wb->l, &(start[i]), sizeof(uint32_t))) return 4;
if(!memcpy(wb->p+wb->l+4, &(values[i]), sizeof(float))) return 5;
updateStats(fp, wb->span, values[i]);
wb->l += 8;
}
wb->end = start[n-1] + wb->span;
return 0;
}
//4 bytes per entry
int bwAddIntervalSpanSteps(bigWigFile_t *fp, char *chrom, uint32_t start, uint32_t span, uint32_t step, float *values, uint32_t n) {
uint32_t i, tid;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0;
if(!fp->isWrite) return 1;
if(!wb) return 2;
if(wb->ltype != 3) flushBuffer(fp);
if(flushBuffer(fp)) return 3;
tid = bwGetTid(fp, chrom);
if(tid == (uint32_t) -1) return 4;
wb->tid = tid;
wb->start = start;
wb->step = step;
wb->span = span;
wb->ltype = 3;
for(i=0; i<n; i++) {
if(wb->l + 4 >= fp->hdr->bufSize) {
wb->end = wb->start + ((wb->l-24)>>2) * step;
flushBuffer(fp);
wb->start = wb->end;
}
if(!memcpy(wb->p+wb->l, &(values[i]), sizeof(float))) return 5;
updateStats(fp, wb->span, values[i]);
wb->l += 4;
}
wb->end = wb->start + (wb->l>>2) * step;
return 0;
}
int bwAppendIntervalSpanSteps(bigWigFile_t *fp, float *values, uint32_t n) {
uint32_t i;
bwWriteBuffer_t *wb = fp->writeBuffer;
if(!n) return 0;
if(!fp->isWrite) return 1;
if(!wb) return 2;
if(wb->ltype != 3) return 3;
for(i=0; i<n; i++) {
if(wb->l + 4 >= fp->hdr->bufSize) {
wb->end = wb->start + ((wb->l-24)>>2) * wb->step;
flushBuffer(fp);
wb->start = wb->end;
}
if(!memcpy(wb->p+wb->l, &(values[i]), sizeof(float))) return 4;
updateStats(fp, wb->span, values[i]);
wb->l += 4;
}
wb->end = wb->start + (wb->l>>2) * wb->step;
return 0;
}
//0 on success
int writeSummary(bigWigFile_t *fp) {
if(writeAtPos(&(fp->hdr->nBasesCovered), sizeof(uint64_t), 1, fp->hdr->summaryOffset, fp->URL->x.fp)) return 1;
if(writeAtPos(&(fp->hdr->minVal), sizeof(double), 1, fp->hdr->summaryOffset+8, fp->URL->x.fp)) return 2;
if(writeAtPos(&(fp->hdr->maxVal), sizeof(double), 1, fp->hdr->summaryOffset+16, fp->URL->x.fp)) return 3;
if(writeAtPos(&(fp->hdr->sumData), sizeof(double), 1, fp->hdr->summaryOffset+24, fp->URL->x.fp)) return 4;
if(writeAtPos(&(fp->hdr->sumSquared), sizeof(double), 1, fp->hdr->summaryOffset+32, fp->URL->x.fp)) return 5;
return 0;
}
static bwRTreeNode_t *makeEmptyNode(uint32_t blockSize) {
bwRTreeNode_t *n = calloc(1, sizeof(bwRTreeNode_t));
if(!n) return NULL;
n->chrIdxStart = malloc(blockSize*sizeof(uint32_t));
if(!n->chrIdxStart) goto error;
n->baseStart = malloc(blockSize*sizeof(uint32_t));
if(!n->baseStart) goto error;
n->chrIdxEnd = malloc(blockSize*sizeof(uint32_t));
if(!n->chrIdxEnd) goto error;
n->baseEnd = malloc(blockSize*sizeof(uint32_t));
if(!n->baseEnd) goto error;
n->dataOffset = calloc(blockSize,sizeof(uint64_t)); //This MUST be 0 for node writing!
if(!n->dataOffset) goto error;
n->x.child = malloc(blockSize*sizeof(uint64_t));
if(!n->x.child) goto error;
return n;
error:
if(n->chrIdxStart) free(n->chrIdxStart);
if(n->baseStart) free(n->baseStart);
if(n->chrIdxEnd) free(n->chrIdxEnd);
if(n->baseEnd) free(n->baseEnd);
if(n->dataOffset) free(n->dataOffset);
if(n->x.child) free(n->x.child);
free(n);
return NULL;
}
//Returns 0 on success. This doesn't attempt to clean up!
static bwRTreeNode_t *addLeaves(bwLL **ll, uint64_t *sz, uint64_t toProcess, uint32_t blockSize) {
uint32_t i;
uint64_t foo;
bwRTreeNode_t *n = makeEmptyNode(blockSize);
if(!n) return NULL;
if(toProcess <= blockSize) {
for(i=0; i<toProcess; i++) {
n->chrIdxStart[i] = (*ll)->node->chrIdxStart[0];
n->baseStart[i] = (*ll)->node->baseStart[0];
n->chrIdxEnd[i] = (*ll)->node->chrIdxEnd[(*ll)->node->nChildren-1];
n->baseEnd[i] = (*ll)->node->baseEnd[(*ll)->node->nChildren-1];
n->x.child[i] = (*ll)->node;
*sz += 4 + 32*(*ll)->node->nChildren;
*ll = (*ll)->next;
n->nChildren++;
}
} else {
for(i=0; i<blockSize; i++) {
foo = ceil(((double) toProcess)/((double) blockSize-i));
if(!ll) break;
n->x.child[i] = addLeaves(ll, sz, foo, blockSize);
if(!n->x.child[i]) goto error;
n->chrIdxStart[i] = n->x.child[i]->chrIdxStart[0];
n->baseStart[i] = n->x.child[i]->baseStart[0];
n->chrIdxEnd[i] = n->x.child[i]->chrIdxEnd[n->x.child[i]->nChildren-1];
n->baseEnd[i] = n->x.child[i]->baseEnd[n->x.child[i]->nChildren-1];
n->nChildren++;
toProcess -= foo;
}
}
*sz += 4 + 24*n->nChildren;
return n;
error:
bwDestroyIndexNode(n);
return NULL;
}
//Returns 1 on error
int writeIndexTreeNode(FILE *fp, bwRTreeNode_t *n, uint8_t *wrote, int level) {
uint8_t one = 0;
uint32_t i, j, vector[6] = {0, 0, 0, 0, 0, 0}; //The last 8 bytes are left as 0
if(n->isLeaf) return 0;
for(i=0; i<n->nChildren; i++) {
if(n->dataOffset[i]) { //traverse into child
if(n->isLeaf) return 0; //Only write leaves once!
if(writeIndexTreeNode(fp, n->x.child[i], wrote, level+1)) return 1;
} else {
n->dataOffset[i] = ftell(fp);
if(fwrite(&(n->x.child[i]->isLeaf), sizeof(uint8_t), 1, fp) != 1) return 1;
if(fwrite(&one, sizeof(uint8_t), 1, fp) != 1) return 1; //one byte of padding
if(fwrite(&(n->x.child[i]->nChildren), sizeof(uint16_t), 1, fp) != 1) return 1;
for(j=0; j<n->x.child[i]->nChildren; j++) {
vector[0] = n->x.child[i]->chrIdxStart[j];
vector[1] = n->x.child[i]->baseStart[j];
vector[2] = n->x.child[i]->chrIdxEnd[j];
vector[3] = n->x.child[i]->baseEnd[j];
if(n->x.child[i]->isLeaf) {
//Include the offset and size
if(fwrite(vector, sizeof(uint32_t), 4, fp) != 4) return 1;
if(fwrite(&(n->x.child[i]->dataOffset[j]), sizeof(uint64_t), 1, fp) != 1) return 1;
if(fwrite(&(n->x.child[i]->x.size[j]), sizeof(uint64_t), 1, fp) != 1) return 1;
} else {
if(fwrite(vector, sizeof(uint32_t), 6, fp) != 6) return 1;
}
}
*wrote = 1;
}
}
return 0;
}
//returns 1 on success
int writeIndexOffsets(FILE *fp, bwRTreeNode_t *n, uint64_t offset) {
uint32_t i;
if(n->isLeaf) return 0;
for(i=0; i<n->nChildren; i++) {
if(writeIndexOffsets(fp, n->x.child[i], n->dataOffset[i])) return 1;
if(writeAtPos(&(n->dataOffset[i]), sizeof(uint64_t), 1, offset+20+24*i, fp)) return 2;
}
return 0;
}
//Returns 0 on success
int writeIndexTree(bigWigFile_t *fp) {
uint64_t offset;
uint8_t wrote = 0;
int rv;
while((rv = writeIndexTreeNode(fp->URL->x.fp, fp->idx->root, &wrote, 0)) == 0) {
if(!wrote) break;
wrote = 0;
}
if(rv || wrote) return 1;
//Save the file position
offset = bwTell(fp);
//Write the offsets
if(writeIndexOffsets(fp->URL->x.fp, fp->idx->root, fp->idx->rootOffset)) return 2;
//Move the file pointer back to the end
bwSetPos(fp, offset);
return 0;
}
//Returns 0 on success. The original state SHOULD be preserved on error
int writeIndex(bigWigFile_t *fp) {
uint32_t four = IDX_MAGIC;
uint64_t idxSize = 0, foo;
uint8_t one = 0;
uint32_t i, vector[6] = {0, 0, 0, 0, 0, 0}; //The last 8 bytes are left as 0
bwLL *ll = fp->writeBuffer->firstIndexNode, *p;
bwRTreeNode_t *root = NULL;
if(!fp->writeBuffer->nBlocks) return 0;
fp->idx = malloc(sizeof(bwRTree_t));
if(!fp->idx) return 2;
fp->idx->root = root;
//Update the file header to indicate the proper index position
foo = bwTell(fp);
if(writeAtPos(&foo, sizeof(uint64_t), 1, 0x18, fp->URL->x.fp)) return 3;
//Make the tree
if(ll == fp->writeBuffer->currentIndexNode) {
root = ll->node;
idxSize = 4 + 24*root->nChildren;
} else {
root = addLeaves(&ll, &idxSize, ceil(((double)fp->writeBuffer->nBlocks)/fp->writeBuffer->blockSize), fp->writeBuffer->blockSize);
}
if(!root) return 4;
fp->idx->root = root;
ll = fp->writeBuffer->firstIndexNode;
while(ll) {
p = ll->next;
free(ll);
ll=p;
}
//write the header
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 5;
if(fwrite(&(fp->writeBuffer->blockSize), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 6;
if(fwrite(&(fp->writeBuffer->nBlocks), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 7;
if(fwrite(&(root->chrIdxStart[0]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 8;
if(fwrite(&(root->baseStart[0]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 9;
if(fwrite(&(root->chrIdxEnd[root->nChildren-1]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 10;
if(fwrite(&(root->baseEnd[root->nChildren-1]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 11;
if(fwrite(&idxSize, sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 12;
four = 1;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 13;
four = 0;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 14; //padding
fp->idx->rootOffset = bwTell(fp);
//Write the root node, since writeIndexTree writes the children and fills in the offset
if(fwrite(&(root->isLeaf), sizeof(uint8_t), 1, fp->URL->x.fp) != 1) return 16;
if(fwrite(&one, sizeof(uint8_t), 1, fp->URL->x.fp) != 1) return 17; //one byte of padding
if(fwrite(&(root->nChildren), sizeof(uint16_t), 1, fp->URL->x.fp) != 1) return 18;
for(i=0; i<root->nChildren; i++) {
vector[0] = root->chrIdxStart[i];
vector[1] = root->baseStart[i];
vector[2] = root->chrIdxEnd[i];
vector[3] = root->baseEnd[i];
if(root->isLeaf) {
//Include the offset and size
if(fwrite(vector, sizeof(uint32_t), 4, fp->URL->x.fp) != 4) return 19;
if(fwrite(&(root->dataOffset[i]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 20;
if(fwrite(&(root->x.size[i]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 21;
} else {
root->dataOffset[i] = 0; //FIXME: Something upstream is setting this to impossible values (e.g., 0x21?!?!?)
if(fwrite(vector, sizeof(uint32_t), 6, fp->URL->x.fp) != 6) return 22;
}
}
//Write each level
if(writeIndexTree(fp)) return 23;
return 0;
}
//The first zoom level has a resolution of 4x mean entry size
//This may or may not produce the requested number of zoom levels
int makeZoomLevels(bigWigFile_t *fp) {
uint32_t meanBinSize, i;
uint32_t multiplier = 4, zoom = 10, maxZoom = 0;
uint16_t nLevels = 0;
meanBinSize = ((double) fp->writeBuffer->runningWidthSum)/(fp->writeBuffer->nEntries);
//In reality, one level is skipped
meanBinSize *= 4;
//N.B., we must ALWAYS check that the zoom doesn't overflow a uint32_t!
if(((uint32_t)-1)>>2 < meanBinSize) return 0; //No zoom levels!
if(meanBinSize*4 > zoom) zoom = multiplier*meanBinSize;
fp->hdr->zoomHdrs = calloc(1, sizeof(bwZoomHdr_t));
if(!fp->hdr->zoomHdrs) return 1;
fp->hdr->zoomHdrs->level = malloc(fp->hdr->nLevels * sizeof(uint32_t));
fp->hdr->zoomHdrs->dataOffset = calloc(fp->hdr->nLevels, sizeof(uint64_t));
fp->hdr->zoomHdrs->indexOffset = calloc(fp->hdr->nLevels, sizeof(uint64_t));
fp->hdr->zoomHdrs->idx = calloc(fp->hdr->nLevels, sizeof(bwRTree_t*));
if(!fp->hdr->zoomHdrs->level) return 2;
if(!fp->hdr->zoomHdrs->dataOffset) return 3;
if(!fp->hdr->zoomHdrs->indexOffset) return 4;
if(!fp->hdr->zoomHdrs->idx) return 5;
//There's no point in having a zoom level larger than the largest chromosome
//This will none the less allow at least one zoom level, which is generally needed for IGV et al.
for(i=0; i<fp->cl->nKeys; i++) {
if(fp->cl->len[i] > maxZoom) maxZoom = fp->cl->len[i];
}
if(zoom > maxZoom) zoom = maxZoom;
for(i=0; i<fp->hdr->nLevels; i++) {
if(zoom > maxZoom) break; //prevent absurdly large zoom levels
fp->hdr->zoomHdrs->level[i] = zoom;
nLevels++;
if(((uint32_t)-1)/multiplier < zoom) break;
zoom *= multiplier;
}
fp->hdr->nLevels = nLevels;
fp->writeBuffer->firstZoomBuffer = calloc(nLevels,sizeof(bwZoomBuffer_t*));
if(!fp->writeBuffer->firstZoomBuffer) goto error;
fp->writeBuffer->lastZoomBuffer = calloc(nLevels,sizeof(bwZoomBuffer_t*));
if(!fp->writeBuffer->lastZoomBuffer) goto error;
fp->writeBuffer->nNodes = calloc(nLevels, sizeof(uint64_t));
for(i=0; i<fp->hdr->nLevels; i++) {
fp->writeBuffer->firstZoomBuffer[i] = calloc(1, sizeof(bwZoomBuffer_t));
if(!fp->writeBuffer->firstZoomBuffer[i]) goto error;
fp->writeBuffer->firstZoomBuffer[i]->p = calloc(fp->hdr->bufSize/32, 32);
if(!fp->writeBuffer->firstZoomBuffer[i]->p) goto error;
fp->writeBuffer->firstZoomBuffer[i]->m = fp->hdr->bufSize;
((uint32_t*)fp->writeBuffer->firstZoomBuffer[i]->p)[0] = 0;
((uint32_t*)fp->writeBuffer->firstZoomBuffer[i]->p)[1] = 0;
((uint32_t*)fp->writeBuffer->firstZoomBuffer[i]->p)[2] = fp->hdr->zoomHdrs->level[i];
if(fp->hdr->zoomHdrs->level[i] > fp->cl->len[0]) ((uint32_t*)fp->writeBuffer->firstZoomBuffer[i]->p)[2] = fp->cl->len[0];
fp->writeBuffer->lastZoomBuffer[i] = fp->writeBuffer->firstZoomBuffer[i];
}
return 0;
error:
if(fp->writeBuffer->firstZoomBuffer) {
for(i=0; i<fp->hdr->nLevels; i++) {
if(fp->writeBuffer->firstZoomBuffer[i]) {
if(fp->writeBuffer->firstZoomBuffer[i]->p) free(fp->writeBuffer->firstZoomBuffer[i]->p);
free(fp->writeBuffer->firstZoomBuffer[i]);
}
}
free(fp->writeBuffer->firstZoomBuffer);
}
if(fp->writeBuffer->lastZoomBuffer) free(fp->writeBuffer->lastZoomBuffer);
if(fp->writeBuffer->nNodes) free(fp->writeBuffer->lastZoomBuffer);
return 6;
}
//Given an interval start, calculate the next one at a zoom level
void nextPos(bigWigFile_t *fp, uint32_t size, uint32_t *pos, uint32_t desiredTid) {
uint32_t *tid = pos;
uint32_t *start = pos+1;
uint32_t *end = pos+2;
*start += size;
if(*start >= fp->cl->len[*tid]) {
(*start) = 0;
(*tid)++;
}
//prevent needless iteration when changing chromosomes
if(*tid < desiredTid) {
*tid = desiredTid;
*start = 0;
}
(*end) = *start+size;
if(*end > fp->cl->len[*tid]) (*end) = fp->cl->len[*tid];
}
//Return the number of bases two intervals overlap
uint32_t overlapsInterval(uint32_t tid0, uint32_t start0, uint32_t end0, uint32_t tid1, uint32_t start1, uint32_t end1) {
if(tid0 != tid1) return 0;
if(end0 <= start1) return 0;
if(end1 <= start0) return 0;
if(end0 <= end1) {
if(start1 > start0) return end0-start1;
return end0-start0;
} else {
if(start1 > start0) return end1-start1;
return end1-start0;
}
}
//Returns the number of bases of the interval written
uint32_t updateInterval(bigWigFile_t *fp, bwZoomBuffer_t *buffer, double *sum, double *sumsq, uint32_t size, uint32_t tid, uint32_t start, uint32_t end, float value) {
uint32_t *p2 = (uint32_t*) buffer->p;
float *fp2 = (float*) p2;
uint32_t rv = 0, offset = 0;
if(!buffer) return 0;
if(buffer->l+32 >= buffer->m) return 0;
//Make sure that we don't overflow a uint32_t by adding some huge value to start
if(start + size < start) size = ((uint32_t) -1) - start;
if(buffer->l) {
offset = buffer->l/32;
} else {
p2[0] = tid;
p2[1] = start;
if(start+size < end) p2[2] = start+size;
else p2[2] = end;
}
//Do we have any overlap with the previously added interval?
if(offset) {
rv = overlapsInterval(p2[8*(offset-1)], p2[8*(offset-1)+1], p2[8*(offset-1)+1] + size, tid, start, end);
if(rv) {
p2[8*(offset-1)+2] = start + rv;
p2[8*(offset-1)+3] += rv;
if(fp2[8*(offset-1)+4] > value) fp2[8*(offset-1)+4] = value;
if(fp2[8*(offset-1)+5] < value) fp2[8*(offset-1)+5] = value;
*sum += rv*value;
*sumsq += rv*pow(value, 2.0);
return rv;
} else {
fp2[8*(offset-1)+6] = *sum;
fp2[8*(offset-1)+7] = *sumsq;
*sum = 0.0;
*sumsq = 0.0;
}
}
//If we move to a new interval then skip iterating over a bunch of obviously non-overlapping intervals
if(offset && p2[8*offset+2] == 0) {
p2[8*offset] = tid;
p2[8*offset+1] = start;
if(start+size < end) p2[8*offset+2] = start+size;
else p2[8*offset+2] = end;
//nextPos(fp, size, p2+8*offset, tid); //We can actually skip uncovered intervals
}
//Add a new entry
while(!(rv = overlapsInterval(p2[8*offset], p2[8*offset+1], p2[8*offset+1] + size, tid, start, end))) {
p2[8*offset] = tid;
p2[8*offset+1] = start;
if(start+size < end) p2[8*offset+2] = start+size;
else p2[8*offset+2] = end;
//nextPos(fp, size, p2+8*offset, tid);
}
p2[8*offset+3] = rv;
fp2[8*offset+4] = value; //min
fp2[8*offset+5] = value; //max
*sum += rv * value;
*sumsq += rv * pow(value,2.0);
buffer->l += 32;
return rv;
}
//Returns 0 on success
int addIntervalValue(bigWigFile_t *fp, uint64_t *nEntries, double *sum, double *sumsq, bwZoomBuffer_t *buffer, uint32_t itemsPerSlot, uint32_t zoom, uint32_t tid, uint32_t start, uint32_t end, float value) {
bwZoomBuffer_t *newBuffer = NULL;
uint32_t rv;
while(start < end) {
rv = updateInterval(fp, buffer, sum, sumsq, zoom, tid, start, end, value);
if(!rv) {
//Allocate a new buffer
newBuffer = calloc(1, sizeof(bwZoomBuffer_t));
if(!newBuffer) return 1;
newBuffer->p = calloc(itemsPerSlot, 32);
if(!newBuffer->p) goto error;
newBuffer->m = itemsPerSlot*32;
memcpy(newBuffer->p, buffer->p+buffer->l-32, 4);
memcpy(newBuffer->p+4, buffer->p+buffer->l-28, 4);
((uint32_t*) newBuffer->p)[2] = ((uint32_t*) newBuffer->p)[1] + zoom;
*sum = *sumsq = 0.0;
rv = updateInterval(fp, newBuffer, sum, sumsq, zoom, tid, start, end, value);
if(!rv) goto error;
buffer->next = newBuffer;
buffer = buffer->next;
*nEntries += 1;
}
start += rv;
}
return 0;
error:
if(newBuffer) {
if(newBuffer->m) free(newBuffer->p);
free(newBuffer);
}
return 2;
}
//Get all of the intervals and add them to the appropriate zoomBuffer
int constructZoomLevels(bigWigFile_t *fp) {
bwOverlappingIntervals_t *intervals = NULL;
double *sum = NULL, *sumsq = NULL;
uint32_t i, j, k;
sum = calloc(fp->hdr->nLevels, sizeof(double));
sumsq = calloc(fp->hdr->nLevels, sizeof(double));
if(!sum || !sumsq) goto error;
for(i=0; i<fp->cl->nKeys; i++) {
intervals = bwGetOverlappingIntervals(fp, fp->cl->chrom[i], 0, fp->cl->len[i]);
if(!intervals) goto error;
for(j=0; j<intervals->l; j++) {
for(k=0; k<fp->hdr->nLevels; k++) {
if(addIntervalValue(fp, &(fp->writeBuffer->nNodes[k]), sum+k, sumsq+k, fp->writeBuffer->lastZoomBuffer[k], fp->hdr->bufSize/32, fp->hdr->zoomHdrs->level[k], i, intervals->start[j], intervals->end[j], intervals->value[j])) goto error;
while(fp->writeBuffer->lastZoomBuffer[k]->next) fp->writeBuffer->lastZoomBuffer[k] = fp->writeBuffer->lastZoomBuffer[k]->next;
}
}
bwDestroyOverlappingIntervals(intervals);
}
//Make an index for each zoom level
for(i=0; i<fp->hdr->nLevels; i++) {
fp->hdr->zoomHdrs->idx[i] = calloc(1, sizeof(bwRTree_t));
if(!fp->hdr->zoomHdrs->idx[i]) return 1;
fp->hdr->zoomHdrs->idx[i]->blockSize = fp->writeBuffer->blockSize;
}
free(sum);
free(sumsq);
return 0;
error:
if(intervals) bwDestroyOverlappingIntervals(intervals);
if(sum) free(sum);
if(sumsq) free(sumsq);
return 1;
}
int writeZoomLevels(bigWigFile_t *fp) {
uint64_t offset1, offset2, idxSize = 0;
uint32_t i, j, four = 0, last, vector[6] = {0, 0, 0, 0, 0, 0}; //The last 8 bytes are left as 0;
uint8_t wrote, one = 0;
uint16_t actualNLevels = 0;
int rv;
bwLL *ll, *p;
bwRTreeNode_t *root;
bwZoomBuffer_t *zb, *zb2;
bwWriteBuffer_t *wb = fp->writeBuffer;
uLongf sz;
for(i=0; i<fp->hdr->nLevels; i++) {
if(i) {
//Is this a duplicate level?
if(fp->writeBuffer->nNodes[i] == fp->writeBuffer->nNodes[i-1]) break;
}
actualNLevels++;
//reserve a uint32_t for the number of blocks
fp->hdr->zoomHdrs->dataOffset[i] = bwTell(fp);
fp->writeBuffer->nBlocks = 0;
fp->writeBuffer->l = 24;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 1;
zb = fp->writeBuffer->firstZoomBuffer[i];
fp->writeBuffer->firstIndexNode = NULL;
fp->writeBuffer->currentIndexNode = NULL;
while(zb) {
sz = fp->hdr->bufSize;
if(compress(wb->compressP, &sz, zb->p, zb->l) != Z_OK) return 2;
//write the data to disk
if(fwrite(wb->compressP, sizeof(uint8_t), sz, fp->URL->x.fp) != sz) return 3;
//Add an entry into the index
last = (zb->l - 32)>>2;
if(addIndexEntry(fp, ((uint32_t*)zb->p)[0], ((uint32_t*)zb->p)[last], ((uint32_t*)zb->p)[1], ((uint32_t*)zb->p)[last+2], bwTell(fp)-sz, sz)) return 4;
wb->nBlocks++;
wb->l = 24;
zb = zb->next;
}
if(writeAtPos(&(wb->nBlocks), sizeof(uint32_t), 1, fp->hdr->zoomHdrs->dataOffset[i], fp->URL->x.fp)) return 5;
//Make the tree
ll = fp->writeBuffer->firstIndexNode;
if(ll == fp->writeBuffer->currentIndexNode) {
root = ll->node;
idxSize = 4 + 24*root->nChildren;
} else {
root = addLeaves(&ll, &idxSize, ceil(((double)fp->writeBuffer->nBlocks)/fp->writeBuffer->blockSize), fp->writeBuffer->blockSize);
}
if(!root) return 4;
fp->hdr->zoomHdrs->idx[i]->root = root;
ll = fp->writeBuffer->firstIndexNode;
while(ll) {
p = ll->next;
free(ll);
ll=p;
}
//write the index
wrote = 0;
fp->hdr->zoomHdrs->indexOffset[i] = bwTell(fp);
four = IDX_MAGIC;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 1;
root = fp->hdr->zoomHdrs->idx[i]->root;
if(fwrite(&(fp->writeBuffer->blockSize), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 6;
if(fwrite(&(fp->writeBuffer->nBlocks), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 7;
if(fwrite(&(root->chrIdxStart[0]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 8;
if(fwrite(&(root->baseStart[0]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 9;
if(fwrite(&(root->chrIdxEnd[root->nChildren-1]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 10;
if(fwrite(&(root->baseEnd[root->nChildren-1]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 11;
if(fwrite(&idxSize, sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 12;
four = fp->hdr->bufSize/32;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 13;
four = 0;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 14; //padding
fp->hdr->zoomHdrs->idx[i]->rootOffset = bwTell(fp);
//Write the root node, since writeIndexTree writes the children and fills in the offset
offset1 = bwTell(fp);
if(fwrite(&(root->isLeaf), sizeof(uint8_t), 1, fp->URL->x.fp) != 1) return 16;
if(fwrite(&one, sizeof(uint8_t), 1, fp->URL->x.fp) != 1) return 17; //one byte of padding
if(fwrite(&(root->nChildren), sizeof(uint16_t), 1, fp->URL->x.fp) != 1) return 18;
for(j=0; j<root->nChildren; j++) {
vector[0] = root->chrIdxStart[j];
vector[1] = root->baseStart[j];
vector[2] = root->chrIdxEnd[j];
vector[3] = root->baseEnd[j];
if(root->isLeaf) {
//Include the offset and size
if(fwrite(vector, sizeof(uint32_t), 4, fp->URL->x.fp) != 4) return 19;
if(fwrite(&(root->dataOffset[j]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 20;
if(fwrite(&(root->x.size[j]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 21;
} else {
if(fwrite(vector, sizeof(uint32_t), 6, fp->URL->x.fp) != 6) return 22;
}
}
while((rv = writeIndexTreeNode(fp->URL->x.fp, fp->hdr->zoomHdrs->idx[i]->root, &wrote, 0)) == 0) {
if(!wrote) break;
wrote = 0;
}
if(rv || wrote) return 6;
//Save the file position
offset2 = bwTell(fp);
//Write the offsets
if(writeIndexOffsets(fp->URL->x.fp, root, offset1)) return 2;
//Move the file pointer back to the end
bwSetPos(fp, offset2);
//Free the linked list
zb = fp->writeBuffer->firstZoomBuffer[i];
while(zb) {
if(zb->p) free(zb->p);
zb2 = zb->next;
free(zb);
zb = zb2;
}
fp->writeBuffer->firstZoomBuffer[i] = NULL;
}
//Free unused zoom levels
for(i=actualNLevels; i<fp->hdr->nLevels; i++) {
zb = fp->writeBuffer->firstZoomBuffer[i];
while(zb) {
if(zb->p) free(zb->p);
zb2 = zb->next;
free(zb);
zb = zb2;
}
fp->writeBuffer->firstZoomBuffer[i] = NULL;
}
//Write the zoom headers to disk
offset1 = bwTell(fp);
if(bwSetPos(fp, 0x40)) return 7;
four = 0;
for(i=0; i<actualNLevels; i++) {
if(fwrite(&(fp->hdr->zoomHdrs->level[i]), sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 8;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 9;
if(fwrite(&(fp->hdr->zoomHdrs->dataOffset[i]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 10;
if(fwrite(&(fp->hdr->zoomHdrs->indexOffset[i]), sizeof(uint64_t), 1, fp->URL->x.fp) != 1) return 11;
}
//Write the number of levels if needed
if(bwSetPos(fp, 0x6)) return 12;
if(fwrite(&actualNLevels, sizeof(uint16_t), 1, fp->URL->x.fp) != 1) return 13;
if(bwSetPos(fp, offset1)) return 14;
return 0;
}
//0 on success
int bwFinalize(bigWigFile_t *fp) {
uint32_t four;
uint64_t offset;
if(!fp->isWrite) return 0;
//Flush the buffer
if(flushBuffer(fp)) return 1; //Valgrind reports a problem here!
//Update the data section with the number of blocks written
if(fp->hdr) {
if(writeAtPos(&(fp->writeBuffer->nBlocks), sizeof(uint64_t), 1, fp->hdr->dataOffset, fp->URL->x.fp)) return 2;
} else {
//The header wasn't written!
return 1;
}
//write the bufferSize
if(fp->hdr->bufSize) {
if(writeAtPos(&(fp->hdr->bufSize), sizeof(uint32_t), 1, 0x34, fp->URL->x.fp)) return 2;
}
//write the summary information
if(writeSummary(fp)) return 3;
//Convert the linked-list to a tree and write to disk
if(writeIndex(fp)) return 4;
//Zoom level stuff here?
if(fp->hdr->nLevels && fp->writeBuffer->nBlocks) {
offset = bwTell(fp);
if(makeZoomLevels(fp)) return 5;
if(constructZoomLevels(fp)) return 6;
bwSetPos(fp, offset);
if(writeZoomLevels(fp)) return 7; //This write nLevels as well
}
//write magic at the end of the file
four = BIGWIG_MAGIC;
if(fwrite(&four, sizeof(uint32_t), 1, fp->URL->x.fp) != 1) return 9;
return 0;
}
/*
data chunk:
uint64_t number of blocks (2 / 110851)
some blocks
an uncompressed data block (24 byte header)
uint32_t Tid 0-4
uint32_t start 4-8
uint32_t end 8-12
uint32_t step 12-16
uint32_t span 16-20
uint8_t type 20
uint8_t padding
uint16_t nItems 22
nItems of:
type 1: //12 bytes
uint32_t start
uint32_t end
float value
type 2: //8 bytes
uint32_t start
float value
type 3: //4 bytes
float value
data block index header
uint32_t magic
uint32_t blockSize (256 in the example) maximum number of children
uint64_t number of blocks (2 / 110851)
uint32_t startTid
uint32_t startPos
uint32_t endTid
uint32_t endPos
uint64_t index size? (0x1E7 / 0x1AF0401F) index address?
uint32_t itemsPerBlock (1 / 1) 1024 for zoom headers 1024 for zoom headers
uint32_t padding
data block index node non-leaf (4 bytes + 24*nChildren)
uint8_t isLeaf
uint8_t padding
uint16_t nChildren (2, 256)
uint32_t startTid
uint32_t startPos
uint32_t endTid
uint32_t endPos
uint64_t dataOffset (0x1AF05853, 0x1AF07057)
data block index node leaf (4 bytes + 32*nChildren)
uint8_t isLeaf
uint8_t padding
uint16_t nChildren (2)
uint32_t startTid
uint32_t startPos
uint32_t endTid
uint32_t endPos
uint64_t dataOffset (0x198, 0x1CF)
uint64_t dataSize (55, 24)
zoom data block
uint32_t number of blocks (10519766)
some data blocks
*/
|