File: HTS.pm

package info (click to toggle)
libbio-db-hts-perl 3.01-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,152 kB
  • sloc: perl: 2,375; sh: 247; makefile: 9
file content (2394 lines) | stat: -rw-r--r-- 80,204 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394

=head1 LICENSE

Copyright [2015-2018] EMBL-European Bioinformatics Institute

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

=head1 NAME

Bio::DB::HTS -- Read files using HTSlib including BAM/CRAM, Tabix and BCF database files

=head1 SYNOPSIS

 use Bio::DB::HTS;

 # high level API
 # Note that the high level API does not reset the CRAM file pointer to the start
 # of the file as the method to do so is (at time or writing) not easily accessible.
 # Therefore a new HTS object may be needed to repeat a query.
 my $hts = Bio::DB::HTS->new(-bam  =>"data/ex1.bam",
                             -fasta=>"data/ex1.fa",
			     );

 my @targets    = $hts->seq_ids;
 my @alignments = $hts->get_features_by_location(-seq_id => 'seq2',
                                                 -start  => 500,
                                                 -end    => 800);
 for my $a (@alignments) {

    # where does the alignment start in the reference sequence
    my $seqid  = $a->seq_id;
    my $start  = $a->start;
    my $end    = $a->end;
    my $strand = $a->strand;
    my $cigar  = $a->cigar_str;
    my $paired = $a->get_tag_values('PAIRED');

    # where does the alignment start in the query sequence
    my $query_start = $a->query->start;
    my $query_end   = $a->query->end;

    my $ref_dna   = $a->dna;        # reference sequence bases
    my $query_dna = $a->query->dna; # query sequence bases

    my @scores    = $a->qscore;     # per-base quality scores
    my $match_qual= $a->qual;       # quality of the match
 }

 my @pairs = $hts->get_features_by_location(-type   => 'read_pair',
                                            -seq_id => 'seq2',
                                            -start  => 500,
                                            -end    => 800);

 for my $pair (@pairs)
 {
    my $length                    = $pair->length;   # insert length
    my ($first_mate,$second_mate) = $pair->get_SeqFeatures;
    my $f_start = $first_mate->start;
    my $s_start = $second_mate->start;
 }

 # low level API
 my $hfile        = Bio::DB::HTSfile->open('/path/to/alignment_file');
 my $header       = $hfile->header_read;
 my $target_count = $header->n_targets;
 my $target_names = $header->target_name;
 while (my $align = $hfile->read1($header))
 {
    my $seqid     = $target_names->[$align->tid];
    my $start     = $align->pos+1;
    my $end       = $align->calend;
    my $cigar     = $align->cigar_str;
 }

 Bio::DB::HTSfile->index_build($bamfile);
 my $index = Bio::DB::HTSfile->index_load($hfile);
 my $index = Bio::DB::HTSfile->index_open_in_safewd($hfile);

 my $callback = sub {
     my $alignment = shift;
     my $start       = $alignment->start;
     my $end         = $alignment->end;
     my $seqid       = $target_names->[$alignment->tid];
     print $alignment->qname," aligns to $seqid:$start..$end\n";
 }
 my $header = $index->header;
 $index->fetch($hfile,$header->parse_region('seq2'),$callback);

=head1 DESCRIPTION

This module provides a Perl interface to the HTSlib library for
indexed and unindexed SAM/BAM/CRAM sequence alignment databases. 
It provides support for retrieving information on individual alignments,
read pairs, and alignment coverage information across large
regions. It also provides callback functionality for calling SNPs and
performing other base-by-base functions.

=head2 The high-level API

The high-level API provides a BioPerl-compatible interface to indexed
BAM and CRAM files. The alignment file database is treated as a collection of
Bio::SeqFeatureI features, and can be searched for features by name,
location, type and combinations of feature tags such as whether the
alignment is part of a mate-pair.

When opening a alignment database using the high-level API, you provide the
pathnames of two files: the FASTA file that contains the reference
genome sequence, and the BAM file that contains the query sequences
and their alignments. If either of the two files needs to be indexed,
the indexing will need to be built. You can then query the
database for alignment features by combinations of name, position,
type, and feature tag.

The high-level API provides access to up to four feature "types":

 * "match": The "raw" unpaired alignment between a read and the
   reference sequence.

 * "read_pair": Paired alignments; a single composite
   feature that contains two subfeatures for the alignments of each
   of the mates in a mate pair.

 * "coverage": A feature that spans a region of interest that contains
   numeric information on the coverage of reads across the region.

 * "region": A way of retrieving information about the reference
   sequence. Searching for features of type "region" will return a
   list of chromosomes or contigs in the reference sequence, rather
   than read alignments.

 * "chromosome": A synonym for "region".

B<Features> can be en masse in a single call, retrieved in a
memory-efficient streaming basis using an iterator, or interrogated
using a filehandle that return a series of SAM-format lines.

B<SAM alignment flags> can be retrieved using BioPerl's feature "tag"
mechanism. For example, to interrogate the FIRST_MATE flag, one
fetches the "FIRST_MATE" tag:

  warn "aye aye captain!" if $alignment->get_tag_values('FIRST_MATE');

The Bio::SeqFeatureI interface has been extended to retrieve all flags
as a compact human-readable string, and to return the CIGAR alignment
in a variety of formats.

B<Split alignments>, such as reads that cover introns, are dealt with
in one of two ways. The default is to leave split alignments alone:
they can be detected by one or more "N" operations in the CIGAR
string. Optionally, you can choose to have the API split these
alignments across two or more subfeatures; the CIGAR strings of these
split alignments will be adjusted accordingly.

B<Interface to the pileup routines> The API provides you with access
to the samtools "pileup" API. This gives you the ability to write a
callback that will be invoked on every column of the alignment for the
purpose of calculating coverage, quality score metrics, or SNP
calling.

B<Access to the reference sequence> When you create the Bio::DB::HTS
object, you can pass the path to a FASTA file containing the reference
sequence. Alternatively, you may pass an object that knows how to
retrieve DNA sequences across a range via the seq() or fetch_seq()
methods, as described under new().

If the SAM/BAM file has MD tags, then these tags will be used to
reconstruct the reference sequence when necessary, in which case you
can completely omit the -fasta argument. Note that not all SAM/BAM
files have MD tags, and those that do may not use them correctly due
to the newness of this part of the SAM spec. You may wish to populate
these tags using samtools' "calmd" command.

If the -fasta argument is omitted and no MD tags are present, then the
reference sequence will be returned as 'N'.

The B<main object classes> that you will be dealing with in the
high-level API are as follows:

 * Bio::DB::HTS               -- A collection of alignments and reference sequences.
 * Bio::DB::HTS::Alignment    -- The alignment between a query and the reference.
 * Bio::DB::HTS::Query        -- An object corresponding to the query sequence in
                                  which both (+) and (-) strand alignments are
                                  shown in the reference (+) strand.
 * Bio::DB::HTS::Target       -- An interface to the query sequence in which
                                   (-) strand alignments are shown in reverse
                                   complement

You may encounter other classes as well. These include:

 * Bio::DB::HTS::Segment       -- This corresponds to a region on the reference
                                  sequence.
 * Bio::DB::HTS::Constants     -- This defines CIGAR symbol constants and flags.
 * Bio::DB::HTS::AlignWrapper  -- An alignment helper object that adds split
                                  alignment functionality. See Bio::DB::HTS::Alignment
                                  for the documentation on using it.
 * Bio::DB::HTS::ReadIterator  -- An iterator that mediates the one-feature-at-a-time
                                  retrieval mechanism.
 * Bio::DB::HTS::FetchIterator -- Another iterator for feature-at-a-time retrieval.

=head2 The low-level API

The low-level API closely mirrors that of the HTSlib library. It
provides the ability to open and read SAM, BAM and CRAM files,
build indexes, and perform searches across them.

The classes you will be interacting with in the low-level API are as
follows:

 * Bio::DB::HTS            -- Methods that read and write SAM, BAM and CRAM files.
 * Bio::DB::HTS::Header    -- Methods for manipulating the BAM file header.
 * Bio::DB::HTS::Alignment -- Methods for manipulating alignment data.
 * Bio::DB::HTS::Pileup    -- Methods for manipulating the pileup data structure.
 * Bio::DB::HTS::Fai       -- Methods for creating and reading from indexed Fasta
                              files.

=head1 METHODS

We cover the high-level API first. The high-level API code can be
found in the files Bio/DB/HTS.pm and Bio/DB/HTS/*.pm.

=head2 Bio::DB::HTS Constructor and basic accessors

=over 4

=item $sam = Bio::DB::HTS->new(%options)

The Bio::DB::HTS object combines a Fasta file of the reference
sequences with an SAM/BAM/CRAM  alignment file to allow for convenient retrieval of
human-readable sequence IDs and reference sequences. The new()
constructor accepts a -name=>value style list of options as
follows:

  Option         Description
  ------         -------------

  -bam           Path to the SAM/BAM/CRAM alignment file that contains the
                 alignments (required). A http: or ftp: URL is accepted.

  -fasta         Path to the Fasta file that contains
                 the reference sequences (optional). Alternatively,
                 you may pass any object that supports a seq()
                 or fetch_seq() method and takes the three arguments
                 ($seq_id,$start,$end).

  -expand_flags  A boolean value. If true then the standard
                 alignment flags will be broken out as
                 individual tags such as 'M_UNMAPPED' (default false).

  -split_splices A boolean value. If true, then alignments that
                 are split across splices will be broken out
                 into a single alignment containing two sub-
                 alignments (default false).

  -split         The same as -split_splices.

  -force_refseq  Always use the reference sequence file to derive the
                 reference sequence, even when the sequence can be
                 derived from the MD tag. This is slower, but safer
                 when working with BAM files derived from buggy aligners
                 or when the reference contains non-canonical (modified)
                 bases.

  -autoindex     Create an alignment index file if one does not exist
                 or the current one has a modification date
                 earlier than the alignment file.

An example of a typical new() constructor invocation is:

  $hts = Bio::DB::HTS->new(-fasta => '/home/projects/genomes/hu17.fa',
                           -bam   => '/home/projects/alignments/ej88.bam',
                           -expand_flags  => 1,
                           -split_splices => 1);

If the B<-fasta> argument is present, then you will be able to use the
interface to fetch the reference sequence's bases. Otherwise, calls
that return the reference sequence will return sequences consisting
entirely of "N".

B<-expand_flags> option, if true, has the effect of turning each of
the standard SAM flags into a separately retrievable B<tag> in the
Bio::SeqFeatureI interface. Otherwise, the standard flags will be
concatenated in easily parseable form as a tag named "FLAGS". See
get_all_tags() and get_tag_values() for more information.

Any two-letter extension flags, such as H0 or H1, will always appear
as separate tags regardless of the setting.

B<-split_splices> has the effect of breaking up alignments that
contain an "N" operation into subparts for more convenient
manipulation. For example, if you have both paired reads and spliced
alignments in the BAM file, the following code shows the subpart
relationships:

  $pair        = $hts->get_feature_by_name('E113:01:01:23');
  @mates       = $pair->get_SeqFeatures;
  @mate1_parts = $mates[0]->get_SeqFeatures;
  @mate2_parts = $mates[1]->get_SeqFeatures;

Because there is some overhead to splitting up the spliced alignments,
this option is false by default.

B<Remote access> to alignment files located on an HTTP or FTP server is
possible. Simply replace the path to the BAM file with the appropriate
URL. Note that incorrect URLs may lead to a core dump.

It is not currently possible to refer to a remote FASTA file. These
will have to be downloaded locally and indexed before using.

=item $flag = $hts->expand_flags([$new_value])

Get or set the expand_flags option. This can be done after object
creation and will have an immediate effect on all alignments fetched
from the alignment file.

=item $flag = $hts->split_splices([$new_value])

Get or set the split_splices option. This can be done after object
creation and will affect all alignments fetched from the alignment file
B<subsequently.>

=item $header = $hts->header

Return the Bio::DB::HTS::Header object associated with the alignment
file. You can manipulate the header using the low-level API.

=item $hts_path = $hts->hts_path

Return the path of the alignment file used to create the hts object. This
makes the object more portable.

=item $hts_file    = $hts->$hts_file

Returns the low-level Bio::DB::HTSfile object associated with the opened
file.

=item $fai    = $hts->fai

Returns the Bio::DB::HTS::Fai object associated with the Fasta
file. You can then manipulate this object with the low-level API.

B<The index can be built automatically for you if it does not already
exist.> If index building is necessarily, the process will need write
privileges to the same directory in which the Fasta file resides.> If
the process does not have write permission, then the call will fail.


=item $hts_idx    = $hts->hts_index

Return the Bio::DB::HTS::Index object associated with the alignment file.

The index is not automatically built.

=item $hts->clone

Bio::DB::HTS objects are not stable across fork() operations. If you
fork, you must call clone() either in the parent or the child process
before attempting to call any methods.

=back

=head2 Getting information about reference sequences

The Bio::DB::HTS object provides the following methods for getting
information about the reference sequence(s) contained in the
associated Fasta file.

=over 4

=item @seq_ids = $hts->seq_ids

Returns an unsorted list of the IDs of the reference sequences (known
elsewhere in this document as seq_ids). This is the same as the
identifier following the ">" sign in the Fasta file (e.g. "chr1").

=item $num_targets = $hts->n_targets

Return the number of reference sequences.

=item $length = $hts->length('seqid')

Returns the length of the reference sequence named "seqid".

=item $seq_id = $hts->target_name($tid)

Translates a numeric target ID (TID) returned by the low-level API
into a seq_id used by the high-level API.

=item $length = $hts->target_len($tid)

Translates a numeric target ID (TID) from the low-level API to a
sequence length.

=item $dna    = $hts->seq($seqid,$start,$end)

Returns the DNA across the region from start to end on reference
seqid. Note that this is a string, not a Bio::PrimarySeq object. If
no -fasta path was passed when the sam object was created, then you
will receive a series of N nucleotides of the requested length.

=back

=head2 Creating and querying segments

Bio::DB::HTS::Segment objects refer regions on the reference
sequence. They can be used to retrieve the sequence of the reference,
as well as alignments that overlap with the region.

=over 4

=item $segment = $hts->segment($seqid,$start,$end);

=item $segment = $hts->segment(-seq_id=>'chr1',-start=>5000,-end=>6000);

Segments are created using the Bio:DB::HTS->segment() method. It can
be called using one to three positional arguments corresponding to the
seq_id of the reference sequence, and optionally the start and end
positions of a subregion on the sequence. If the start and/or end are
undefined, they will be replaced with the beginning and end of the
sequence respectively.

Alternatively, you may call segment() with named -seq_id, -start and
-end arguments.

All coordinates are 1-based.

=item $seqid = $segment->seq_id

Return the segment's sequence ID.

=item $start = $segment->start

Return the segment's start position.

=item $end  = $segment->end

Return the segment's end position.

=item $strand = $segment->strand

Return the strand of the segment (always 0).

=item $length = $segment->length

Return the length of the segment.

=item $dna    = $segment->dna

Return the DNA string for the reference sequence under this segment.

=item $seq    = $segment->seq

Return a Bio::PrimarySeq object corresponding to the sequence of the
reference under this segment. You can get the actual DNA string in
this redundant-looking way:

 $dna = $segment->seq->seq

The advantage of working with a Bio::PrimarySeq object is that you can
perform operations on it, including taking its reverse complement and
subsequences.

=item @alignments = $segment->features(%args)

Return alignments that overlap the segment in the associated alignment
file. The optional %args list allows you to filter features by name,
tag or other attributes. See the documentation of the
Bio::DB::HTS->features() method for the full list of options. Here are
some typical examples:

 # get all the overlapping alignments
 @all_alignments = $segment->features;

 # get an iterator across the alignments
 my $iterator     = $segment->features(-iterator=>1);
 while (my $align = $iterator->next_seq) { do something }

 # get a SAM filehandle across the alignments
 my $fh           = $segment->features(-fh=>1);
 while (<$fh>) { print }

 # get only the alignments with unmapped mates
 my @unmapped    = $segment->features(-flags=>{M_UNMAPPED=>1});

 # get coverage across this region
 my ($coverage)       = $segment->features('coverage');
 my @data_points      = $coverage->coverage;

 # grep through features using a coderef
 my @reverse_alignments = $segment->features(
                           -filter => sub {
                                  my $a = shift;
                                  return $a->strand < 0;
                               });

=item $tag = $segment->primary_tag

=item $tag = $segment->source_tag

Return the strings "region" and "sam/bam" respectively. These methods
allow the segment to be passed to BioPerl methods that expect
Bio::SeqFeatureI objects.

=item $segment->name, $segment->display_name, $segment->get_SeqFeatures, $segment->get_tag_values

These methods are provided for Bio::SeqFeatureI compatibility and
don't do anything of interest.

=back

=head2 Retrieving alignments, mate pairs and coverage information

The features() method is an all-purpose tool for retrieving alignment
information from the SAM/BAM/CRAM alignment file database. In addition, the methods
get_features_by_name(), get_features_by_location() and others provide
convenient shortcuts to features().

These methods either return a list of features, an iterator across a
list of features, or a filehandle opened on a pseudo-SAM file.

=over 4

=item @features   = $hts->features(%options)

=item $iterator   = $hts->features(-iterator=>1,%more_options)

=item $filehandle = $hts->features(-fh=>1,%more_options)

=item @features   = $hts->features('type1','type2'...)

This is the all-purpose interface for fetching alignments and other
types of features from the database. Arguments are a -name=>value
option list selected from the following list of options:

  Option         Description
  ------         -------------

  -type          Filter on features of a given type. You may provide
                 either a scalar typename, or a reference to an
                 array of desired feature types. Valid types are
                 "match", "read_pair", "coverage" and "chromosome."

                 See below for a full explanation of feature types.

  -name          Filter on reads with the designated name. Note that
                 this can be a slow operation unless accompanied by
                 the feature location as well.

  -seq_id        Filter on features that align to seq_id between start
  -start         and end. -start and -end must be used in conjunction
  -end           with -seq_id. If -start and/or -end are absent, they
                 will default to 1 and the end of the reference
                 sequence, respectively.

  -flags         Filter features that match a list of one or more
                 flags. See below for the format.

  -attributes    The same as -flags, for compatibility with other
  -tags          APIs.

  -filter        Filter on features with a coderef. The coderef will
                 receive a single argument consisting of the feature
                 and should return true to keep the feature, or false
                 to discard it.

  -iterator      Instead of returning a list of features, return an
                 iterator across the results. To retrieve the results,
                 call the iterator's next_seq() method repeatedly
                 until it returns undef to indicate that no more
                 matching features remain.

  -fh            Instead of returning a list of features, return a
                 filehandle. Read from the filehandle to retrieve
                 each of the results in TAM format, one alignment
                 per line read. This only works for features of type
                 "match."

The high-level API introduces the concept of a B<feature "type"> in order
to provide several convenience functions. You specify types by using
the optional B<-type> argument. The following types are currently
supported:

B<match>. The "match" type corresponds to the unprocessed SAM
alignment. It will retrieve single reads, either mapped or
unmapped. Each match feature's primary_tag() method will return the
string "match." The features returned by this call are of type
Bio::DB::HTS::AlignWrapper.

B<read_pair>. The "paired_end" type causes the sam interface to find
and merge together mate pairs. Fetching this type of feature will
yield a series of Bio::SeqFeatureI objects, each as long as the total
distance on the reference sequence spanned by the mate pairs. The
top-level feature is of type Bio::SeqFeature::Lite; it contains two
Bio::DB::HTS::AlignWrapper subparts.

Call get_SeqFeatures() to get the two individual reads. Example:

 my @pairs    = $hts->features(-type=>'read_pair');
 my $p        = $pairs[0];
 my $i_length = $p->length;
 my @ends     = $p->get_SeqFeatures;
 my $left     = $ends[0]->start;
 my $right    = $ends[1]->end;

B<coverage>. The "coverage" type causes the sam interface to calculate
coverage across the designated region. It only works properly if
accompanied by the desired location of the coverage graph; -seq_id is
a mandatory argument for coverage calculation, and -start and -end are
optional. The call will return a single Bio::SeqFeatureI object whose
primary_tag() is "coverage." To recover the coverage data, call the
object's coverage() method to obtain an array (list context) or
arrayref (scalar context) of coverage counts across the region of
interest:

 my ($coverage) = $hts->features(-type=>'coverage',-seq_id=>'seq1');
 my @data       = $coverage->coverage;
 my $total;
 for (@data) { $total += $_ }
 my $average_coverage = $total/@data;

By default the coverage graph will be at the base pair level. So for a
region 5000 bp wide, coverage() will return an array or arrayref with
exactly 5000 elements. However, you also have the option of
calculating the coverage across larger bins. Simply append the number
of intervals you are interested to the "coverage" typename. For
example, fetching "coverage:500" will return a feature whose
coverage() method will return the coverage across 500 intervals.

B<chromosome> or B<region>. The "chromosome" or "region" type are
interchangeable. They ask the sam interface to construct
Bio::DB::HTS::Segment representing the reference sequences. These two
calls give similar results:

 my $segment = $hts->segment('seq2',1=>500);
 my ($seg)   = $hts->features(-type=>'chromosome',
		              -seq_id=>'seq2',-start=>1,-end=>500);

Due to an unresolved bug, you cannot fetch chromosome features in the
same call with matches and other feature types call. Specifically,
this works as expected:

 my @chromosomes = $hts->features (-type=>'chromosome');

But this doesn't (as of 18 June 2009):

 my @chromosomes_and_matches = $hts->features(-type=>['match','chromosome']);

If no -type argument is provided, then features() defaults to finding
features of type "match."

You may call features() with a plain list of strings (positional
arguments, not -type=>value arguments). This will be interpreted as a
list of feature types to return:

 my ($coverage) = $hts->features('coverage')

For a description of the methods available in the features returned
from this call, please see L<Bio::SeqfeatureI> and
L<Bio::DB::HTS::Alignment>.

You can B<filter> "match" and "read_pair" features by name, location
and/or flags. The name and flag filters are not very efficient. Unless
they are combined with a location filter, they will initiate an
exhaustive search of the BAM database.

Name filters are case-insensitive, and allow you to use shell-style
"*" and "?"  wildcards. Flag filters created with the B<-flag>,
B<-attribute> or B<-tag> options have the following syntax:

 -flag => { FLAG_NAME_1 => ['list','of','possible','values'],
            FLAG_NAME_2 => ['list','of','possible','values'],
            ...
          }

The value of B<-flag> is a hash reference in which the keys are flag
names and the values are array references containing lists of
acceptable values. The list of values are OR'd with each other, and
the flag names are AND'd with each other.

The B<-filter> option provides a completely generic filtering
interface. Provide a reference to a subroutine. It will be called
once for each potential feature. Return true to keep the feature, or
false to discard it. Here is an example of how to find all matches
whose alignment quality scores are greater than 80.

 @features = $hts->features(-filter=>sub {shift->qual > 80} );

By default, features() returns a list of all matching features. You
may instead request an iterator across the results list by passing
-iterator=>1. This will give you an object that has a single method,
next_seq():

  my $high_qual  = $hts->features(-filter  => sub {shift->qual > 80},
                                  -iterator=> 1 );
  while (my $feature = $high_qual->next_seq) {
    # do something with the alignment
  }

Similarly, by passing a true value to the argument B<-fh>, you can
obtain a filehandle to a virtual SAM file. This only works with the
"match" feature type:

  my $high_qual  = $hts->features(-filter  => sub {shift->qual > 80},
                                  -fh      => 1 );
  while (my $tam_line = <$high_qual>) {
    chomp($tam_line);
    # do something with it
  }

=item @features   = $hts->get_features_by_name($name)

Convenience method. The same as calling $hts->features(-name=>$name);

=item $feature    = $hts->get_feature_by_name($name)

Convenience method. The same as ($hts->features(-name=>$name))[0].

=item @features   = $hts->get_features_by_location($seqid,$start,$end)

Convenience method. The same as calling
$hts->features(-seq_id=>$seqid,-start=>$start,-end=>$end).

=item @features   = $hts->get_features_by_flag(%flags)

Convenience method. The same as calling
$hts->features(-flags=>\%flags). This method is also called
get_features_by_attribute() and get_features_by_tag(). Example:

 @features = $hts->get_features_by_flag(H0=>1)

=item $feature    = $hts->get_feature_by_id($id)

The high-level API assigns each feature a unique ID composed of its
read name, position and strand and returns it when you call the
feature's primary_id() method. Given that ID, this method returns the
feature.

=item $iterator   = $hts->get_seq_stream(%options)

Convenience method. This is the same as calling
$hts->features(%options,-iterator=>1).

=item $fh         = $hts->get_seq_fh(%options)

Convenience method. This is the same as calling
$hts->features(%options,-fh=>1).

=item $fh         = $hts->tam_fh

Convenience method. It is the same as calling $hts->features(-fh=>1).

=item @types      = $hts->types

This method returns the list of feature types (e.g. "read_pair")
returned by the current version of the interface.

=back

=head2 The generic fetch() and pileup() methods

Lastly, the high-level API supports two methods for rapidly traversing
indexed BAM databases.

=over 4

=item $hts->fetch($region,$callback)

This method traverses the indicated region and invokes a callback
code reference on each match. Specify a region using the syntax
"seqid:start-end", or either of the alternative syntaxes
"seqid:start..end" and "seqid:start,end". If start and end are absent,
then the entire reference sequence is traversed. If end is absent,
then the end of the reference sequence is assumed.

The callback will be called repeatedly with a
Bio::DB::HTS::AlignWrapper on the argument list.

Example:

  $hts->fetch('seq1:600-700',
              sub {
                my $a = shift;
                print $a->display_name,' ',$a->cigar_str,"\n";
              });

Note that the fetch() operation works on reads that B<overlap> the
indicated region. Therefore the callback may be called for reads that
align to the reference at positions that start before or end after the
indicated region.

=item $hts->pileup($region,$callback [,$keep_level])

This method, which is named after the native bam_lpileupfile()
function in the C interfaces, traverses the indicated region and
generates a "pileup" of all the mapped reads that cover it. The
user-provided callback function is then invoked on each position of
the alignment along with a data structure that provides access to the
individual aligned reads.

As with fetch(), the region is specified as a string in the format
"seqid:start-end", "seqid:start..end" or "seqid:start,end".

The callback is a coderef that will be invoked with three arguments:
the seq_id of the reference sequence, the current position on the
reference (in 1-based coordinates!), and a reference to an array of
Bio::DB::HTS::Pileup objects. Here is the typical call signature:

  sub {
       my ($seqid,$pos,$pileup) = @_;
       # do something
  }

For example, if you call pileup on the region "seq1:501-600", then the
callback will be invoked for all reads that overlap the indicated
region. The first invocation of the callback will typically have a
$pos argument somewhat to the left of the desired region and the last
call will be somewhat to the right. You may wish to ignore positions
that are outside of the requested region. Also be aware that the
reference sequence position uses 1-based coordinates, which is
different from the low-level interface, which use 0-based coordinates.

The size of the $pileup array reference indicates the read coverage
at that position. Here is a simple average coverage calculator:

 my $depth      = 0;
 my $positions  = 0;
 my $callback = sub {
         my ($seqid,$pos,$pileup) = @_;
         next unless $pos >= 501 && $pos <= 600;
         $positions++;
         $depth += @$pileup;
 }
 $hts->pileup('seq1:501-600',$callback);
 print "coverage = ",$depth/$positions;

Each Bio::DB::HTS::Pileup object describes the position of a read in
the alignment. Briefly, Bio::DB::HTS::Pileup has the following
methods:

 $pileup->alignment  The alignment at this level (a
                     Bio::DB::HTS::AlignWrapper object).

 $pileup->qpos   The position of the read base at the pileup site,
                 in 0-based coordinates.

 $pileup->pos    The position of the read base at the pileup site,
                 in 1-based coordinates;

 $pileup->level  The level of the read in the multiple alignment
                 view. Note that this field is only valid when
                 $keep_level is true, so it may not be relevant post
                 htslib move.

 $pileup->indel  Length of the indel at this position: 0 for no indel, positive
                 for an insertion (relative to the reference), negative for a
                 deletion (relative to the reference.)

 $pileup->is_del True if the base on the padded read is a deletion.

 $pileup->is_refskip True if the base on the padded read is a gap relative to the reference (denoted as < or > in the pileup)

 $pileup->is_head True if this is the first base in the query sequence.

 $pileup->is_tail True if this is the last base in the query sequence.

See L</Examples> for a very simple SNP caller.

=item $hts->fast_pileup($region,$callback [,$keep_level])

This is identical to pileup() except that the pileup object returns
low-level Bio::DB::HTS::Alignment objects rather than the higher-level
Bio::DB::HTS::AlignWrapper objects. This makes it roughly 50% faster,
but you lose the align objects' seq_id() and get_tag_values()
methods. As a compensation, the callback receives an additional
argument corresponding to the Bio::DB::HTS object. You can use this to
create AlignWrapper objects on an as needed basis:

 my $callback = sub {
    my($seqid,$pos,$pileup,$hts) = @_;
    for my $p (@$pileup) {
       my $alignment = $p->alignment;
       my $wrapper   = Bio::DB::HTS::AlignWrapper->new($alignment,$hts);
       my $has_mate  = $wrapper->get_tag_values('PAIRED');
    }
  };

=item Bio::DB::HTS->max_pileup_cnt([$new_cnt])

=item $hts->max_pileup_cnt([$new_cnt])

The HTSlib library caps pileups at a set level, defaulting to
8000. The callback will not be invoked on a single position more than
the level set by the cap, even if there are more reads. Called with no
arguments, this method returns the current cap value. Called with a
numeric argument, it changes the cap. There is currently no way to
specify an unlimited cap.

This method can be called as an instance method or a class method.

=item $hts->coverage2BedGraph([$fh])

This special-purpose method will compute a four-column BED graph of
the coverage across the entire alignment file and print it to STDOUT.
You may provide a filehandle to redirect output to a file or pipe.

=back

The next sections correspond to the low-level API, which let you
create and manipulate Perl objects that correspond directly to data
structures in the C interface. A major difference between the high and
low level APIs is that in the high-level API, the reference sequence
is identified using a human-readable seq_id. However, in the low-level
API, the reference is identified using a numeric target ID
("tid"). The target ID is established during the creation of the alignment
file and is a small 0-based integer index. The Bio::DB::HTS::Header
object provides methods for converting from seq_ids to tids.

=head2 Indexed Fasta Files

These methods relate to the indexed Fasta (".fai") files.

=over 4

=item $fai = Bio::DB::HTS::Fai->load('/path/to/file.fa')

Load an indexed Fasta file and return the object corresponding to
it. If the index does not exist, it will be created
automatically. Note that you pass the path to the Fasta file, not the
index.

For consistency with Bio::DB::HTS->open() this method is also called
open().

=item $dna_string = $fai->fetch("seqid:start-end")

Given a sequence ID contained in the Fasta file and optionally a
subrange in the form "start-end", finds the indicated subsequence and
returns it as a string.

=back

=head2 Alignment Files

These methods provide interfaces to alignment files in SAM/BAM/CRAM format.

=over 4

=item $hts_file = Bio::DB::HTSfile->open('/path/to/file.bam' [,$mode])

Open the alignment file at the indicated path. Mode, if present, must be
one of the file stream open flags ("r", "w", "wb", "wc", "a", "r+", etc.). If
absent, mode defaults to "r". [write formats: w = SAM, wb = BAM, wc = CRAM]

Note that Bio::DB::HTS objects are not stable across fork()
operations. If you fork, and intend to use the object in both parent
and child, you must reopen the Bio::DB::HTS in either the child or the
parent (but not both) before attempting to call any of the object's
methods.

The path may be an http: or ftp: URL, in which case a copy of the
index file will be downloaded to the current working directory (see
below) and all accesses will be performed on the remote BAM file.

Example:

   $hfile = Bio::DB::HTSfile->open('http://some.site.com/nextgen/chr1_bowtie.bam');

=item $header = $hfile->header_read()

Given an open alignment file, return a Bio::DB::HTS::Header object
containing information about the reference sequence(s). Note that you
must invoke header_read() at least once before calling read1().

=item $status_code = $hfile->header_write($header, [$reference])

Given a Bio::DB::HTSfile::Header object and a BAM file opened in write mode, write the
header to the file. If the write fails the process will be terminated at the C layer.
If $hfile is CRAM formated a second argument $reference, which is the path to the
reference Fasta file, must be passed.
The result code is (currently) always zero.


=item $alignment = $hfile->read1($header)

Read one alignment from the alignment file and return it as a
Bio::DB::HTS::Alignment object. The $header parameter is returned by
invoking header().

=item $bytes = $hfile->write1($header, $alignment)

Given a BAM file that has been opened in write mode and a Bio::DB::HTS::Alignment object,
write the alignment to the BAM file and return the number of bytes successfully written.

=back

=head2 Index methods

The Bio::DB::HTS::Index object provides access to index (.bai|.csi, .crai) files.

=over 4

=item $status_code = Bio::DB::HTS->index_build('/path/to/file.?am')

Given the path to an alignment file, this function attempts to build an
index. The process in which the alignment file exists must be
writable by the current process and there must be sufficient disk
space for the operation or the process will be terminated in the C
library layer. The result code is currently always zero, but in the
future may return a negative value to indicate failure.

The index file built will depend on the alignment file type specified.
For CRAM this will be a .crai file, for BAM .bai.

=item $index = Bio::DB::HTS->index('/path/to/file.?am',$reindex)

Attempt to open the index for the indicated alignment file. If $reindex is
true, and the index either does not exist or is out of date with
respect to the alignment file (by checking modification dates), then attempt
to rebuild the index. Will throw an exception if the index does not
exist or if attempting to rebuild the index was unsuccessful.

=item $index = Bio::DB::HTS->index_load('/path/to/file.?am')

Attempt to open the index file for an alignment file, returning a
Bio::DB::HTS::Index object. The filename path to use is the alignment file,
not the index file (i.e. .bam or .cram, not .bai|.csi or .crai)

=item $index = Bio::DB::HTS->index_open_in_safewd('/path/to/file.?am' [,$mode])

When opening a remote alignmentfile, you may not wish for the index to be
downloaded to the current working directory. This version of index_open
copies the index into the directory indicated by the TMPDIR
environment variable or the system-defined /tmp directory if not
present. You may change the environment variable just before the call
to change its behavior.

=item $code = $index->fetch($hfile,$tid,$start,$end,$callback [,$callback_data])

This is the low-level equivalent of the $hts->fetch() function
described for the high-level API. Given a open BAM file object, the
numeric ID of the reference sequence, start and end ranges on the
reference, and a coderef, this function will traverse the region and
repeatedly invoke the coderef with each Bio::DB::HTS::Alignment
object that overlaps the region.

Arguments:

 Argument      Description
 --------      -----------

 $hts_file     The Bio::DB::HTSfile object that corresponds to the
               index object.

 $tid          The target ID of the reference sequence. This can
               be obtained by calling $header->parse_region() with
               an appropriate opened Bio::DB::HTS::Header object.

 $start        The start and end positions of the desired range on
               the reference sequence given by $tid, in 0-based
 $end          coordinates. Like the $tid, these can be obtained from
               $header->parse_region().

 $callback     A coderef that will be called for each read overlapping
               the designated region.

 $callback_data  Any arbitrary Perl data that you wish to pass to the
               $callback (optional).

The coderef's call signature should look like this:

  my $callback = sub {
                    my ($alignment,$data) = @_;
                    ...
                 }

The first argument is a Bio::DB::HTS::Alignment object. The second is
the callback data (if any) passed to fetch().

Fetch() returns an integer code, but its meaning is not described in
the SAM/BAM C library documentation.

=item $index->pileup($htsfile,$tid,$start,$end,$callback [,$callback_data])

This is the low-level version of the pileup() method, which allows you
to invoke a coderef for every position in a BAM alignment. Arguments
are:

 Argument      Description
 --------      -----------

 $hts_file     The Bio::DB::HTSfile object that corresponds to the
               index object.

 $tid          The target ID of the reference sequence. This can
               be obtained by calling $header->parse_region() with
               an appropriate opened Bio::DB::HTS::Header object.

 $start        The start and end positions of the desired range on
               the reference sequence given by $tid, in 0-based
 $end          coordinates. Like the $tid, these can be obtained from
               $header->parse_region().

 $callback     A coderef that will be called for each position of the
               alignment across the designated region.

 $callback_data  Any arbitrary Perl data that you wish to pass to the
                 $callback (optional).

The callback will be invoked with four arguments corresponding to the
numeric sequence ID of the reference sequence, the B<zero-based>
position on the alignment, an arrayref of Bio::DB::HTS::Pileup
objects, and the callback data, if any. A typical call signature will
be this:

 $callback = sub {
       my ($tid,$pos,$pileups,$callback_data) = @_;
       for my $pileup (@$pileups) {
          # do something
       };

Note that the position argument is zero-based rather than 1-based, as
it is in the high-level API.

The Bio::DB::HTS::Pileup object was described earlier in the
description of the high-level pileup() method.

=item $coverage = $index->coverage($hfile,$tid,$start,$end [,$bins [,maxcnt]])

Calculate coverage for the region on the target sequence given by $tid
between positions $start and $end (zero-based coordinates). This
method will return an array reference equal to the size of the region
(by default). Each element of the array will be an integer indicating
the number of reads aligning over that position. If you provide an
option binsize in $bins, the array will be $bins elements in length,
and each element will contain the average coverage over that region as
a floating point number.

By default, the underlying Samtools library caps coverage counting at
a fixed value of 8000. You may change this default by providing an
optional numeric sixth value, which changes the cap for the duration
of the call, or by invoking Bio::DB::HTS->max_pileup_cnt($new_value),
which changes the cap permanently. Unfortunately there is no way of
specifying that you want an unlimited cap.

=back

=head2 HTS header methods

The Bio::DB::HTS::Header object contains information regarding the
reference sequence(s) used to construct the corresponding alignment
file. It is most frequently used to translate between numeric target
IDs and human-readable seq_ids. Headers can be created by reading
from a BAM file using Bio::DB::HTS->header(). You can
also create header objects from scratch, although there is not much
that you can do with such objects at this point.

=over 4

=item $header = Bio::DB::HTS::Header->new()

Return a new, empty, header object.

=item $n_targets = $header->n_targets

Return the number of reference sequences in the database.

=item $name_arrayref = $header->target_name

Return a reference to an array of reference sequence names,
corresponding to the high-level API's seq_ids.

To convert from a target ID to a seq_id, simply index into this array:

 $seq_id = $header->target_name->[$tid];

=item $length_arrayref = $header->target_len

Return a reference to an array of reference sequence lengths. To get
the length of the sequence corresponding to $tid, just index into the
array returned by target_len():

 $length = $header->target_len->[$tid];

=item $text = $header->text

=item $header->text("new value")

Read the text portion of the header. The text can be replaced by
providing the replacement string as an argument. Note that you should
follow the header conventions when replacing the header text. No
parsing or other error-checking is performed.

=item ($tid,$start,$end) = $header->parse_region("seq_id:start-end")

Given a string in the format "seqid:start-end" (using a human-readable
seq_id and 1-based start and end coordinates), parse the string and
return the target ID and start and end positions in 0-based
coordinates. If the range is omitted, then the start and end
coordinates of the entire sequence is returned. If only the end
position is omitted, then the end of the sequence is assumed.

=item $header->view1($alignment)

This method will accept a Bio::DB::HTS::Alignment object, convert it
to a line of TAM output, and write the output to STDOUT. In the
low-level API there is currently no way to send the output to a
different filehandle or capture it as a string.

=back

=head2 Bio::DB::HTS::Pileup methods

An array of Bio::DB::HTS::Pileup object is passed to the pileup()
callback for each position of a multi-read alignment. Each pileup
object contains information about the alignment of a single read at a
single position.

=over 4

=item $alignment = $pileup->alignment

Return the Bio::DB::HTS::Alignment object at this level. This provides
you with access to the aligning read.

=item $alignment = $pileup->b

An alias for alignment(), provided for compatibility with the C API.

=item $pos = $pileup->qpos

The position of the aligning base in the read in zero-based
coordinates.

=item $pos = $pileup->pos

The position of the aligning base in 1-based coordinates.

=item $level = $pileup->level

The "level" of the read in the BAM-generated text display of the
alignment.

=item $indel = $pileup->indel

Length of the indel at this position: 0 for no indel, positive for an
insertion (relative to the reference), negative for a deletion
(relative to the reference sequence.)

=item $flag = $pileup->is_del

True if the base on the padded read is a deletion.

=item $flag = $pileup->is_refskip

True if the base on the padded read is a gap relative to the reference (denoted as < or > in the pileup)

=item $flag = $pileup->is_head

True if this is the first base in the query sequence.

=item $flag = $pileup->is_tail

True if this is the last base in the query sequence.

=back

=head2 The alignment objects

Please see L<Bio::DB::HTS::Alignment> for documentation of the
Bio::DB::HTS::Alignment and Bio::DB::HTS::AlignWrapper objects.

=head1 DEPENDENCIES

Module::Build, Carp, Bio::Perl (>=1.006001), Test::More

=head1 EXPORT

None

=head1 AUTHORS

Rishi Nag E<lt>rishi@ebi.ac.ukE<gt>, original author.

Alessandro Vullo C<< <avullo at cpan.org> >>, the current developer and maintainer.

=head1 CONTRIBUTORS

Andy Yates, Keiran Raine, John Marshall, Zhicheng Liu, Can Wood, Dietmar Rieder, Chris Fields, David Jones, James Gilbert, Alex Hodgkins (Congenica Ltd.), Rob Aganrab

=head1 KNOWN BUGS

=over 4

=item * SAM file reading and iterating over alignments does not work with older htslib versions (<1.5)

=item * The padded_alignment() function with CRAM files may produce invalid output: unequal lenght of the strings that specify the pairwise alignment

=back


Please report any bugs or feature requests to C<bug-bio-db-hts at rt.cpan.org>, or through
the web interface at L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Bio-DB-HTS>.  I will be notified, and then you'll
automatically be notified of progress on your bug as I make changes.

=head1 TESTING AND CONTRIBUTING

You can obtain the most recent development version of this module via the GitHub
repository at https://github.com/Ensembl/Bio-DB-HTS. Please feel free to submit bug
reports, patches etc.

=head1 SUPPORT 

You can find documentation for this module with the perldoc command.

    perldoc Bio::DB::HTS

You can also look for information at:

=over 4

=item * RT: CPAN's request tracker (report bugs here)

L<http://rt.cpan.org/NoAuth/Bugs.html?Dist=Bio-DB-HTS>

=item * AnnoCPAN: Annotated CPAN documentation

L<http://annocpan.org/dist/Bio-DB-HTS>

=item * CPAN Ratings

L<http://cpanratings.perl.org/d/Bio-DB-HTS>

=item * Search CPAN

L<http://search.cpan.org/dist/Bio-DB-HTS/>

=back

=cut

package Bio::DB::HTS;
$Bio::DB::HTS::VERSION = '3.01';

use strict;
use warnings;

use Scalar::Util qw(reftype);
use Data::Dumper;

use Carp 'croak';
use Bio::SeqFeature::Lite;
use Bio::PrimarySeq;

use base 'DynaLoader';
bootstrap Bio::DB::HTS;

use Bio::DB::HTS::Alignment;
use Bio::DB::HTS::Segment;
use Bio::DB::HTS::AlignWrapper;
use Bio::DB::HTS::PileupWrapper;
use Bio::DB::HTS::FetchIterator;
use Bio::DB::HTS::ReadIterator;

use constant DUMP_INTERVAL => 1_000_000;

sub new {
    my $class         = shift;
    my %args          = $_[0] =~ /^-/ ? @_ : ( -bam => shift );
    my $hts_path      = $args{-bam} or croak "-bam argument required";
    my $fa_path       = $args{-fasta};
    my $expand_flags  = $args{-expand_flags};
    my $split_splices = $args{-split} || $args{-split_splices};
    my $autoindex     = $args{-autoindex};
    my $force_refseq  = $args{-force_refseq};

    # file existence checks
    unless ( Bio::DB::HTSfile->is_remote($hts_path) ) {
        use filetest 'access';
        -e $hts_path or croak "$hts_path does not exist";
        -r $hts_path or croak "is not readable";
    }
    my $hts_file = Bio::DB::HTSfile->open($hts_path) or
      croak "$hts_path open: $!";

    my $fai = $class->new_dna_accessor($fa_path) if $fa_path;

    my $self = bless { fai           => $fai,
                       hts_file      => $hts_file,
                       hts_path      => $hts_path,
                       fa_path       => $fa_path,
                       expand_flags  => $expand_flags,
                       split_splices => $split_splices,
                       autoindex     => $autoindex,
                       force_refseq  => $force_refseq, },
      ref $class || $class;
    $self->header;    # catch it
    return $self;
} ## end sub new

sub hts_file { shift->{hts_file} }


sub clone {
    my $self = shift;
    $self->{hts_file} = Bio::DB::HTSfile->open( $self->{hts_path} )
      if $self->{hts_path};
    $self->{fai} = $self->new_dna_accessor( $self->{fa_path} )
      if $self->{fa_path};
}

sub header {
    my $self = shift;
    my $b    = $self->{hts_file};
    return $self->{header} ||= $b->header_read();
}

sub hts_path {
    my $self = shift;
    return $self->{hts_path};
}

sub fai { shift->{fai} }

sub new_dna_accessor {
    my $self     = shift;
    my $accessor = shift;

    return unless $accessor;

    if ( -e $accessor ) {    # a file, assume it is a fasta file
        use filetest 'access';
        -r $accessor or croak "$accessor is not readable";
        my $a = Bio::DB::HTS::Fai->open($accessor) or
          croak "$accessor open: $!" or
          croak "Can't open FASTA file $accessor: $!";
        return $a;
    }

    if ( ref $accessor && $self->can_do_seq($accessor) ) {
        return $accessor;    # already built
    }

    return;
}

sub can_do_seq {
    my $self = shift;
    my $obj  = shift;
    return UNIVERSAL::can( $obj, 'seq' ) ||
      UNIVERSAL::can( $obj, 'fetch_sequence' );
}

sub seq {
    my $self = shift;
    my ( $seqid, $start, $end ) = @_;
    my $fai = $self->fai or return 'N' x ( $end - $start + 1 );
    return
      $fai->can('seq') ? $fai->seq( $seqid, $start, $end ) :
      $fai->can('fetch_sequence') ?
      $fai->fetch_sequence( $seqid, $start, $end ) :
      'N' x ( $end - $start + 1 );
}

sub expand_flags {
    my $self = shift;
    my $d    = $self->{expand_flags};
    $self->{expand_flags} = shift if @_;
    $d;
}

sub split_splices {
    my $self = shift;
    my $d    = $self->{split_splices};
    $self->{split_splices} = shift if @_;
    $d;
}

sub autoindex {
    my $self = shift;
    my $d    = $self->{autoindex};
    $self->{autoindex} = shift if @_;
    $d;
}

sub force_refseq {
    my $self = shift;
    my $d    = $self->{force_refseq};
    $self->{force_refseq} = shift if @_;
    $d;
}

sub n_targets {
    shift->header->n_targets;
}

sub target_name {
    my $self = shift;
    my $tid  = shift;
    $self->{target_name} ||= $self->header->target_name;
    return $self->{target_name}->[$tid];
}

sub target_len {
    my $self = shift;
    my $tid  = shift;
    $self->{target_len} ||= $self->header->target_len;
    return $self->{target_len}->[$tid];
}

sub seq_ids {
    my $self = shift;
    return @{ $self->header->target_name };
}

sub _cache_targets {
    my $self = shift;
    return $self->{targets} if exists $self->{targets};
    my @targets = map { lc $_ } @{ $self->header->target_name };
    my @lengths = @{ $self->header->target_len };
    my %targets;
    @targets{@targets} =
      @lengths;    # just you try to figure out what this is doing!
    return $self->{targets} = \%targets;
}

sub length {
    my $self        = shift;
    my $target_name = shift;
    return $self->_cache_targets->{ lc $target_name };
}

sub _fetch {
    my $self     = shift;
    my $region   = shift;
    my $callback = shift;
    my $header   = $self->{hts_file}->header_read;
    $region =~ s/\.\.|,/-/;
    my ( $seqid, $start, $end ) = $header->parse_region($region);

    return unless defined $seqid;
    my $index = $self->hts_index;
    $index->fetch( $self->{hts_file}, $seqid, $start, $end, $callback, $self );
}

sub fetch {
    my $self     = shift;
    my $region   = shift;
    my $callback = shift;

    my $code = sub {
        my ( $align, $self ) = @_;
        $callback->( Bio::DB::HTS::AlignWrapper->new( $align, $self ) );
    };
    $self->_fetch( $region, $code );
}

sub pileup {
    my $self = shift;
    my ( $region, $callback ) = @_;

    my $header = $self->header;
    $region =~ s/\.\.|,/-/;
    my ( $seqid, $start, $end ) = $header->parse_region($region);
    return unless defined $seqid;

    my $refnames = $self->header->target_name;

    my $code = sub {
        my ( $tid, $pos, $pileup ) = @_;
        my $seqid = $refnames->[$tid];
        my @p = map { Bio::DB::HTS::PileupWrapper->new( $_, $self ) } @$pileup;
        $callback->( $seqid, $pos + 1, \@p );
    };

    my $index = $self->hts_index;
    $index->pileup( $self->{hts_file}, $seqid, $start, $end, $code );
}

sub fast_pileup {
    my $self = shift;
    my ( $region, $callback, $keep_level ) = @_;

    my $header = $self->header;
    $region =~ s/\.\.|,/-/;
    my ( $seqid, $start, $end ) = $header->parse_region($region);
    return unless defined $seqid;

    my $refnames = $self->header->target_name;

    my $code = sub {
        my ( $tid, $pos, $pileup ) = @_;
        my $seqid = $refnames->[$tid];
        $callback->( $seqid, $pos + 1, $pileup, $self );
    };

    my $index = $self->hts_index;
    $index->pileup( $self->{hts_file}, $seqid, $start, $end, $code );
}

# segment returns a segment across the reference
# it will not work on a arbitrary aligned feature
sub segment {
    my $self = shift;
    my ( $seqid, $start, $end ) = @_;

    if ( $_[0] =~ /^-/ ) {
        my %args = @_;
        $seqid = $args{-seq_id} || $args{-name};
        $start = $args{-start};
        $end   = $args{-stop} || $args{-end};
    }
    else {
        ( $seqid, $start, $end ) = @_;
    }

    my $targets = $self->_cache_targets;
    return unless exists $targets->{ lc $seqid };

    $start = 1 unless defined $start;
    $end = $targets->{ lc $seqid } unless defined $end;
    $start = 1 if $start < 1;
    $end = $targets->{ lc $seqid } if $end > $targets->{ lc $seqid };

    return Bio::DB::HTS::Segment->new( $self, $seqid, $start, $end );
}

sub get_features_by_location {
    my $self = shift;
    my %args;

    if ( $_[0] =~ /^-/ ) {    # named args
        %args = @_;
    }
    else {
        # positional args
        $args{-seq_id} = shift;
        $args{-start}  = shift;
        $args{-end}    = shift;
    }
    $self->features(%args);
}

sub get_features_by_attribute {
    my $self = shift;
    my %attributes = ref( $_[0] ) ? %{ $_[0] } : @_;
    $self->features( -attributes => \%attributes );
}

sub get_features_by_tag {
    shift->get_features_by_attribute(@_);
}

sub get_features_by_flag {
    shift->get_features_by_attribute(@_);
}

sub get_feature_by_name {
    my $self = shift;
    my %args;
    if ( $_[0] =~ /^-/ ) {
        %args = @_;
    }
    else {
        $args{-name} = shift;
    }
    $self->features(%args);
}

sub get_features_by_name { shift->get_feature_by_name(@_) }

sub get_feature_by_id {
    my $self = shift;
    my $id   = shift;
    my ( $name, $tid, $start, $end, $strand, $type ) =
      map { s/%3B/;/ig; $_ } split ';', $id;
    return unless $name && defined $tid;
    $type ||= 'match';
    my $seqid = $self->target_name($tid);
    my @features = $self->features( -name   => $name,
                                    -type   => $type,
                                    -seq_id => $seqid,
                                    -start  => $start,
                                    -end    => $end,
                                    -strand => $strand );
    return unless @features;
    return $features[0];
}

sub get_seq_stream {
    my $self = shift;
    $self->features( @_, -iterator => 1 );
}

sub get_seq_fh {
    my $self = shift;
    $self->features( @_, -fh => 1 );
}

sub types {
    return qw(match read_pair coverage region chromosome);
}

sub features {
    my $self = shift;
    my %args;
    if ( defined $_[0] && $_[0] !~ /^-/ ) {
        $args{-type} = \@_;
    }
    else {
        %args = @_;
    }

    my $seqid      = $args{-seq_id} || $args{-seqid};
    my $start      = $args{-start};
    my $end        = $args{-end} || $args{-stop};
    my $types      = $args{-type} || $args{-types} || [];
    my $attributes = $args{-attributes} || $args{-tags} || $args{-flags};
    my $iterator   = $args{-iterator};
    my $fh         = $args{-fh};
    my $filter     = $args{-filter};
    my $max        = $args{-max_features};

    $types = [$types] unless ref $types;
    $types = [ $args{-class} ] if !@$types && defined $args{-class};
    my $use_index = defined $seqid;

    # we do some special casing to retrieve target (reference) sequences
    # if they are requested
    if ( defined( $args{-name} ) &&
         ( !@$types || $types->[0] =~ /region|chromosome/ ) &&
         !defined $seqid )
    {
        my @results = $self->_segment_search( lc $args{-name} );
        return @results if @results;
    }
    elsif ( @$types && $types->[0] =~ /region|chromosome/ ) {
        return map { $self->segment($_) } $self->seq_ids;
    }

    my %seenit;
    my @types = grep { !$seenit{$_}++ } ref $types ? @$types : $types;
    @types = 'match' unless @types;

    # the filter is intended to be inserted into a closure
    # it will return undef from the closure unless the filter
    # criteria are satisfied
    if ( !$filter ) {
        $filter = '';
        $filter .= $self->_filter_by_name( lc $args{-name} )
          if defined $args{-name};
        $filter .= $self->_filter_by_attribute($attributes)
          if defined $attributes;
    }

    # Special cases for unmunged data
    if ( @types == 1 && $types[0] =~ /^match/ ) {
        # if iterator is requested, and no indexing is possible,
        # then we directly iterate through the database using read1()
        if ( $iterator && !$use_index ) {
            my $header = $self->{hts_file}->header_read;
            my $code   = eval "sub {my \$a=shift;$filter;1}";
            die $@ if $@;
            return
              Bio::DB::HTS::ReadIterator->new( $self, $self->{hts_file}, $code,
                                               $header );
        }
        # TAM filehandle retrieval is requested
        elsif ($fh) {
            return $self->_features_fh( $seqid, $start, $end, $filter );
        }
    }

    # otherwise we're going to do a little magic
    my ( $features, @result );
    for my $t (@types) {
        if ( $t =~ /^(match|read_pair)/ ) {
            # fetch the features if type is 'match' or 'read_pair'
            $features =
              $self->_filter_features( $seqid,  $start, $end,
                                       $filter, undef,  $max );
            # for "match" just return the alignments
            if ( $t =~ /^(match)/ ) {
                push @result, @$features;
            }
            # otherwise aggregate mate pairs into two-level features
            elsif ( $t =~ /^read_pair/ ) {
                $self->_build_mates( $features, \@result );
            }
            next;
        }

        # create a coverage graph if type is 'coverage'
        # specify coverage:N, to create a map of N bins
        # units are coverage per bp
        # resulting array will be stored in the "coverage" attribute
        if ( $t =~ /^coverage:?(\d*)/ ) {
            my $bins = $1;
            push @result,
              $self->_coverage( $seqid, $start, $end, $bins, $filter );
        }
    } ## end for my $t (@types)
    return $iterator ?
      Bio::DB::HTS::FetchIterator->new( \@result, $self->last_feature_count ) :
      @result;
} ## end sub features

sub coverage2BedGraph {
    my $self = shift;
    my $fh   = shift;
    $fh ||= \*STDOUT;

    my $header  = $self->header;
    my $index   = $self->hts_index;
    my $seqids  = $header->target_name;
    my $lengths = $header->target_len;
    my $b       = $self->bam;

    for my $tid ( 0 .. $header->n_targets - 1 ) {
        my $seqid = $seqids->[$tid];
        my $len   = $lengths->[$tid];

        my $sec_start = -1;
        my $last_val  = -1;

        for ( my $start = 0; $start <= $len; $start += DUMP_INTERVAL ) {
            my $end = $start + DUMP_INTERVAL;
            $end = $len if $end > $len;
            my $coverage = $index->coverage( $b, $tid, $start, $end );
            for ( my $i = 0; $i < @$coverage; $i++ ) {
                if ( $last_val == -1 ) {
                    $sec_start = 0;
                    $last_val  = $coverage->[$i];
                }
                if ( $last_val != $coverage->[$i] ) {
                    print $fh $seqid, "\t", $sec_start, "\t", $start + $i,
                      "\t", $last_val, "\n"
                      unless $last_val == 0;
                    $sec_start = $start + $i;
                    $last_val  = $coverage->[$i];
                }
                elsif ( $start + $i == $len - 1 ) {
                    print $fh $seqid, "\t", $sec_start, "\t", $start + $i,
                      "\t", $last_val, "\n"
                      unless $last_val == 0;
                }
            }
        }
    } ## end for my $tid ( 0 .. $header...)
} ## end sub coverage2BedGraph

sub _filter_features {
    my $self = shift;
    my ( $seqid, $start, $end, $filter, $do_tam_fh, $max_features ) = @_;

    my @result;
    my $action =
      $do_tam_fh ? '\$self->header->view1($a)' :
      $self->_push_features($max_features);
    my $user_code;
    if ( ref($filter) eq 'CODE' ) {
        $user_code = $filter;
        $filter    = '';
    }

    my $callback = defined($seqid) ? <<INDEXED : <<NONINDEXED;
sub {
    my \$a = shift;
    $filter
    return unless defined \$a->start;
    $action;
}
INDEXED
sub {
    my \$a    = shift;
    $filter
    $action;
}
NONINDEXED

    my $code = eval $callback;
    die $@ if $@;
    if ($user_code) {
        my $new_callback = sub {
            my $a = shift;
            $code->($a) if $user_code->($a);
        };
        $self->_features( $seqid, $start, $end, $new_callback );
    }
    else {
        $self->_features( $seqid, $start, $end, $code );
    }
    return \@result;
} ## end sub _filter_features

sub _push_features {
    my $self = shift;
    my $max  = shift;

    # simple case -- no max specified. Will push onto an array called
    # @result.

    return 'push @result,Bio::DB::HTS::AlignWrapper->new($a,$self)' unless $max;

    $self->{_result_count} = 0;

    # otherwise we implement a simple subsampling
    my $code = <<END;
    my \$count = ++\$self->{_result_count};
    if (\@result < $max) {
	push \@result,Bio::DB::HTS::AlignWrapper->new(\$a,\$self);
    } else {
	\$result[rand \@result] = Bio::DB::HTS::AlignWrapper->new(\$a,\$self)
	    if rand() < $max/\$count;
    }
END
    return $code;
}

sub last_feature_count { shift->{_result_count} || 0 }

sub _features {
    my $self = shift;
    my ( $seqid, $start, $end, $callback ) = @_;
    if ( defined $seqid ) {
        my $region = $seqid;
        if ( defined $start ) {
            $region .= ":$start";
            $region .= "-$end" if defined $end;
        }
        $self->_fetch( $region, $callback );
    }
    else {
        my $header = $self->{hts_file}->header_read;
        while ( my $b = $self->{hts_file}->read1($header) ) {
            $callback->($b);
        }
    }
}

# build mate pairs
sub _build_mates {
    my $self = shift;
    my ( $src, $dest ) = @_;

    my %read_pairs;
    for my $a (@$src) {
        my $name = $a->display_name;
        unless ( $read_pairs{$name} ) {
            my $isize = $a->isize;
            my $start = $isize >= 0 ? $a->start : $a->end + $isize + 1;
            my $end   = $isize <= 0 ? $a->end : $a->start + $isize - 1;
            $read_pairs{$name} =
              Bio::SeqFeature::Lite->new( -display_name => $name,
                                          -seq_id       => $a->seq_id,
                                          -start        => $start,
                                          -end          => $end,
                                          -type         => 'read_pair',
                                          -class        => 'read_pair', );
        }
        my $d = $self->{split_splices};
        if ($d) {
            my @parts = $a->get_SeqFeatures;
            if ( !@parts ) {
                $read_pairs{$name}->add_SeqFeature($a);
            }
            else {
                for my $x (@parts) {
                    $read_pairs{$name}->add_SeqFeature($x);
                }
            }
        }
        else {
            $read_pairs{$name}->add_SeqFeature($a);
        }
    } ## end for my $a (@$src)
    for my $name ( keys %read_pairs ) {
        my $f = $read_pairs{$name};
        my $primary_id = join( ';',
                               map { s/;/%3B/g; $_ } (
                                                $f->display_name,
                                                ( $f->get_SeqFeatures )[0]->tid,
                                                $f->start,
                                                $f->end,
                                                $f->strand,
                                                $f->type, ) );
        $read_pairs{$name}->primary_id($primary_id);
    }
    push @$dest, values %read_pairs;
} ## end sub _build_mates

sub _coverage {
    my $self = shift;
    my ( $seqid, $start, $end, $bins, $filter ) = @_;

    croak "cannot calculate coverage unless a -seq_id is provided"
      unless defined $seqid;

    my $region = $seqid;
    if ( defined $start ) {
        $region .= ":$start";
        $region .= "-$end" if defined $end;
    }

    my $header = $self->{hts_file}->header_read;
    my ( $id, $s, $e ) = $header->parse_region($region);
    return unless defined $id;

    # parse_region may return a very high value if no end specified
    $end = $e >= 1 << 29 ? $header->target_len->[$id] : $e;
    $start = $s + 1;
    $bins ||= $end - $start + 1;

    my $index = $self->hts_index;
    my $coverage = $index->coverage( $self->{hts_file}, $id, $s, $end,
                                     $bins, 8000, $filter );

    return
      Bio::SeqFeature::HTSCoverage->new( -display_name => "$seqid coverage",
                                      -seq_id       => $seqid,
                                      -start        => $start,
                                      -end          => $end,
                                      -strand       => 0,
                                      -type         => "coverage:$bins",
                                      -class        => "coverage:$bins",
                                      -attributes => { coverage => [$coverage] }
      );
} ## end sub _coverage

sub _segment_search {
    my $self = shift;
    my $name = shift;

    my $targets = $self->_cache_targets;
    return $self->segment($name) if $targets->{$name};

    if ( my $regexp = $self->_glob_match($name) ) {
        my @results = grep { /^$regexp$/i } keys %$targets;
        return map { $self->segment($_) } @results;
    }

    return;
}

sub hts_index {
    my $self = shift;
    if ( defined $self->{hts_idx} ) {
        return $self->{hts_idx};
    }
    $self->{hts_idx} = Bio::DB::HTSfile->index($self);
    return $self->{hts_idx};
}

sub _features_fh {
    my $self = shift;
    my ( $seqid, $start, $end, $filter ) = @_;

    my $result = open my $fh, "-|";
    if ( !$result ) {    # in child
        $self->_filter_features( $seqid, $start, $end, $filter, 'do_fh' )
          ;              # will print TAM to stdout
        exit 0;
    }
    return $fh;

}

sub tam_fh {
    my $self = shift;
    return $self->features( -fh => 1 );
}

sub max_pileup_cnt {
    my $self = shift;
    return Bio::DB::HTSfile->max_pileup_cnt(@_);
}

# return a fragment of code that will be placed in the eval "" filter
# to eliminate alignments that don't match by name
sub _filter_by_name {
    my $self = shift;
    my $name = shift;

    my $frag = "my \$name=\$a->qname; defined \$name or return; ";

    if ( my $regexp = $self->_glob_match($name) ) {
        $frag .= "return unless \$name =~ /^$regexp\$/i;\n";
    }
    else {
        $frag .= "return unless lc \$name eq '$name';\n";
    }
}

# return a fragment of code that will be placed in the eval "" filter
# to eliminate alignments that don't match by attribute
sub _filter_by_attribute {
    my $self       = shift;
    my $attributes = shift;
    my $result;
    for my $tag ( keys %$attributes ) {
        $result .= "my \$value = lc \$a->get_tag_values('$tag');\n";
        $result .= "return unless defined \$value;\n";
        my @comps =
          ref $attributes->{$tag} eq 'ARRAY' ? @{ $attributes->{$tag} } :
          $attributes->{$tag};
        my @matches;
        for my $c (@comps) {
            if ( $c =~ /^[+-]?[\deE.]+$/ ) {    # numeric-looking argument
                push @matches, "CORE::length \$value && \$value == $c";
            }
            elsif ( my $regexp = $self->_glob_match($c) ) {
                push @matches, "\$value =~ /^$regexp\$/i";
            }
            else {
                push @matches, "\$value eq lc '$c'";
            }
        }
        $result .= "return unless " . join( ' OR ', @matches ) . ";\n";
    }
    return $result;
} ## end sub _filter_by_attribute

# turn a glob expression into a regexp
sub _glob_match {
    my $self = shift;
    my $term = shift;
    return unless $term =~ /(?:^|[^\\])[*?]/;
    $term =~ s/(^|[^\\])([+\[\]^{}\$|\(\).])/$1\\$2/g;
    $term =~ s/(^|[^\\])\*/$1.*/g;
    $term =~ s/(^|[^\\])\?/$1./g;
    return $term;
}

package Bio::DB::HTS::Fai;

$Bio::DB::HTS::Fai::VERSION = '3.01';

sub open { shift->load(@_) }

sub seq {
    my $self = shift;
    my ( $seqid, $start, $end ) = @_;
    my $region = $seqid;
    $region .= ":$start" if defined $start;
    $region .= "-$end"   if defined $end;
    return $self->fetch($region);
}

package Bio::SeqFeature::HTSCoverage;

use base 'Bio::SeqFeature::Lite';

$Bio::SeqFeature::HTSCoverage::VERSION = '3.01';

sub coverage {
    my $self = shift;
    my ($coverage) = $self->get_tag_values('coverage');
    return wantarray ? @$coverage : $coverage;
}

sub source {
    my $self = shift;
    my $type = $self->type;
    my ( $base, $width ) = split ':', $type;
    return $width;
}

sub method {
    my $self = shift;
    my $type = $self->type;
    my ( $base, $width ) = split ':', $type;
    return $base;
}

sub gff3_string {
    my $self     = shift;
    my $gff3     = $self->SUPER::gff3_string;
    my $coverage = $self->escape( join( ',', $self->coverage ) );
    $gff3 =~ s/coverage=[^;]+/coverage=$coverage/g;
    return $gff3;
}

package Bio::DB::HTSfile;

$Bio::DB::HTS::HTSfile::VERSION = '3.01';

use File::Spec;
use Cwd;
use Carp 'croak';

sub index {
    my $self      = shift;
    my $hts_obj   = shift;
    my $fh        = $hts_obj->{hts_file};
    my $autoindex = $hts_obj->{autoindex};
    my $path      = $hts_obj->{hts_path};

    return $self->index_open_in_safewd($fh) if Bio::DB::HTSfile->is_remote($path);

    if ($autoindex) {
        if ( !( -e "${path}.bai" or -e "${path}.csi" or -e "${path}.crai" ) ) {
            $self->reindex($path);
        }
        elsif ( -e "${path}.bai" && mtime($path) > mtime("${path}.bai") ) {
            $self->reindex($path);
        }
        elsif ( -e "${path}.csi" && mtime($path) > mtime("${path}.csi") ) {
            croak "csi index is older than bam file, Bio::DB::HTS cannot index csi format."
        }
        elsif ( -e "${path}.crai" && mtime($path) > mtime("${path}.crai") ) {
            $self->reindex($path);
        }
    }

    croak "No index file for $path; try opening file with -autoindex"
      unless -e "${path}.bai" or
        -e "${path}.csi" or
        -e "${path}.crai";
    return $self->index_load($fh);
} ## end sub index

sub reindex {
    my $self = shift;
    my $path = shift;

    # if bam|cram file is not sorted, then index_build will exit.
    # we spawn a shell to intercept this eventuality
    print STDERR "[hts_index_build] creating index for $path\n" if -t STDOUT;

    my $result = open my $fh, "-|";
    die "Couldn't fork $!" unless defined $result;

    if ( $result == 0 ) {    # in child
           # dup stderr to stdout so that we can intercept messages from library
        open STDERR, ">&STDOUT";
        $self->index_build($path);
        exit 0;
    }

    my $mesg = <$fh>;
    $mesg ||= '';
    close $fh;
    if ( $mesg =~ /not sorted/i ) {
        print STDERR "[hts_index_build] sorting by coordinate...\n"
          if -t STDOUT;
        $self->sort_core( 0, $path, "$path.sorted" );

	$path =~ /\.(.+?)$/;
        rename "$path.sorted.$1", $path;

	$self->index_build($path);
    }
    elsif ($mesg) {
        die $mesg;
    }
} ## end sub reindex

# same as index_open(), but changes current wd to TMPDIR to accomodate
# the C library when it tries to download the index file from remote
# locations.
sub index_open_in_safewd {
    my $self   = shift;
    my $fh     = shift;
    my $dir    = getcwd;
    my $tmpdir = File::Spec->tmpdir;
    chdir($tmpdir);
    my $result = $self->index_load($fh);
    chdir $dir;
    $result;
}

sub mtime {
    my $path = shift;
    ( stat($path) )[9];
}

1;
__END__


=head1 EXAMPLES

For illustrative purposes only, here is an extremely stupid SNP caller
that tallies up bases that are q>20 and calls a SNP if there are at
least 4 non-N/non-indel bases at the position and at least 25% of them
are a non-reference base.

 my @SNPs;  # this will be list of SNPs
 my $snp_caller = sub {
	my ($seqid,$pos,$p) = @_;
	my $refbase = $hts->segment($seqid,$pos,$pos)->dna;
        my ($total,$different);
	for my $pileup (@$p) {
	    my $b     = $pileup->alignment;
            next if $pileup->indel or $pileup->is_refskip;      # don't deal with these ;-)

            my $qbase  = substr($b->qseq,$pileup->qpos,1);
            next if $qbase =~ /[nN]/;

            my $qscore = $b->qscore->[$pileup->qpos];
            next unless $qscore > 25;

            $total++;
            $different++ if $refbase ne $qbase;
	}
        if ($total >= 4 && $different/$total >= 0.25) {
           push @SNPs,"$seqid:$pos";
        }
    };

 $hts->pileup('seq1',$snp_caller);
 print "Found SNPs: @SNPs\n";

=head1 GBrowse Compatibility

The Bio::DB::HTS interface can be used as a backend to GBrowse
(gmod.sourceforge.net/gbrowse). GBrowse can calculate and display
coverage graphs across large regions, alignment cartoons across
intermediate size regions, and detailed base-pair level alignments
across small regions.

Here is a typical configuration for a BAM database that contains
information from a shotgun genomic sequencing project. Some notes:

 * It is important to set "search options = none" in order to avoid
   GBrowse trying to scan through the BAM database to match read
   names. This is a time-consuming operation.

 * The callback to "bgcolor" renders pairs whose mates are unmapped in
   red.

 * The callback to "balloon hover" causes a balloon to pop up with the
   read name when the user hovers over each paired read. Otherwise the
   default behavior would be to provide information about the pair as
   a whole.

 * When the user zooms out to 1001 bp or greaterp, the track switches
   to a coverage graph.

 [bamtest:database]
 db_adaptor    = Bio::DB::HTSfile
 db_args       = -bam   /var/www/gbrowse2/databases/bamtest/ex1.bam
 search options= default

 [Pair]
 feature       = read_pair
 glyph         = segments
 database      = bamtest
 draw_target   = 1
 show_mismatch = 1
 bgcolor      = sub {
	     	 my $f = shift;
		 return $f->get_tag_values('M_UNMAPPED') ? 'red' : 'green';
	       }
 fgcolor       = green
 height        = 3
 label         = sub {shift->display_name}
 label density = 50
 bump          = fast
 connector     = dashed
 balloon hover = sub {
	      	    my $f     = shift;
		    return '' unless $f->type eq 'match';
		    return 'Read: '.$f->display_name.' : '.$f->flag_str;
                }
 key          = Read Pairs

 [Pair:1000]
 feature      = coverage:1001
 glyph        = wiggle_xyplot
 height       = 50
 min_score    = 0
 autoscale    = local

To show alignment data correctly when the user is zoomed in, you
should also provide a pointer to the FASTA file containing the
reference genome. In this case, modify the db_args line to read:

 db_args       = -bam   /var/www/gbrowse2/databases/bamtest/ex1.bam
                 -fasta /var/www/gbrowse2/databases/bamtest/ex1.fa

=head1 SEE ALSO

L<Bio::Perl>, L<Bio::DB::HTS::Alignment>, L<Bio::DB::HTS::Constants>

=cut