File: j0l.c

package info (click to toggle)
libc-sparc 5.3.12-2
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 18,664 kB
  • ctags: 53,237
  • sloc: ansic: 181,379; asm: 5,080; makefile: 3,340; lex: 521; sh: 439; yacc: 401; awk: 28
file content (296 lines) | stat: -rw-r--r-- 8,707 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*							j0l.c
 *
 *	Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, j0l();
 *
 * y = j0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of first kind, order zero of the argument.
 *
 * The domain is divided into the intervals [0, 9] and
 * (9, infinity). In the first interval the rational approximation
 * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
 * where r, s, t are the first three zeros of the function.
 * In the second interval the expansion is in terms of the
 * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
 * = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
 * The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30       10000       2.7e-19      7.3e-20
 *
 *
 */
/*							y0l.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y0l();
 *
 * y = y0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 5>, [5,9> and
 * [9, infinity). In the first interval a rational approximation
 * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
 *
 * In the second interval, the approximation is
 *     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
 * where p, q, r, s are zeros of y0(x).
 *
 * The third interval uses the same approximations to modulus
 * and phase as j0(x), whence y0(x) = modulus * sin(phase).
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       25000       3.0e-19     7.6e-20
 *
 */

/* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com).  */

#include <math.h>
extern long double __polevll ( long double, long double *, int );
extern long double __p1evll ( long double, long double *, int );

/*
j0(x) = (x^2-JZ1)(x^2-JZ2)(x^2-JZ3)P(x**2)/Q(x**2)
0 <= x <= 9
Relative error
n=7, d=8
Peak error =  8.49e-22
Relative error spread =  2.2e-3
*/
static long double j0n[] = {
 1.296848754518641770562068596970917461302E0L,
-3.239201943301299801017988814490822973468E3L,
 3.490002040733471400106951588156446469843E6L,
-2.076797068740966813172740536268762823178E9L,
 7.283696461857171054940603724292997493661E11L,
-1.487926133645291056388093978451001239544E14L,
 1.620335009643150402367970862340822012501E16L,
-7.173386747526788067407034559506246493841E17L
 };
static long double j0d[] = {
/* 1.000000000000000000000000000000000000000E0*/
 2.281959869176887763844919265666715670624E3L,
 2.910386840401647706984290219401654268412E6L,
 2.608400226578100610990921977837307261661E9L,
 1.752689035792859338859788285894079836315E12L,
 8.879132373286001289461351204912522718368E14L,
 3.265560832845194013668975527943185616740E17L,
 7.881340554308432241891814409857299717887E19L,
 9.466475654163919450527627558766493397282E21L
};
/*
sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2)
z(x) = 1/sqrt(x)
Relative error
n=7, d=7
Peak error =  1.80e-20
Relative error spread =  5.1e-2
*/
static long double modulusn[] = {
 3.947542376069224461532136552047845797185E-1L,
 6.864682945702134624126371301477343341825E0L,
 1.021369773577974343843959835514109613368E1L,
 7.626141421290849630522661034590426845035E0L,
 2.842537511425216145635344663341056100390E0L,
 7.162842530423205720961523942028933535254E-1L,
 9.036664453160200052295692999857254683255E-2L,
 8.461833426898867839659448202505801120140E-3L
};
static long double modulusd[] = {
/* 1.000000000000000000000000000000000000000E0 */
 9.117176038171821115904394138261429005561E0L,
 1.301235226061478261480860548640027632230E1L,
 9.613002539386213788182145213835341179345E0L,
 3.569671060989910901903283335065262208244E0L,
 8.983920141407590632423345373045592707789E-1L,
 1.132577931332212304985636383878157848593E-1L,
 1.060533546154121770441529910796331563105E-2L
 };
/*
atan(y0(x)/j0(x)) = x - pi/4 + x P(x**2)/Q(x**2)
Absolute error
n=5, d=6
Peak error =  2.80e-21
Relative error spread =  5.5e-1
*/
static long double phasen[] = {
-7.356766355393571519038139469135140406247E-1L,
-5.001635199922493694706241245828396845424E-1L,
-7.737323518141516881715220488195636681899E-2L,
-3.998893155826990642730404602407242779985E-3L,
-7.496317036829964150970102768499885677420E-5L,
-4.290885090773112963541732090289084223939E-7L
};
static long double phased[] = {
/* 1.000000000000000000000000000000000000000E0 */
 7.377856408614376072744766256586157817057E0L,
 4.285043297797736118068767291405925283657E0L,
 6.348446472935245102890369628706013793370E-1L,
 3.229866782185025048457458026131873133385E-2L,
 6.014932317342190404134448927950191465063E-4L,
 3.432708072618490390094952090444729316515E-6L
 };

#define JZ1 5.783185962946784521175995758L
#define JZ2 30.471262343662086399078163175L
#define JZ3 7.4887006790695183444889041310136808274810908E1L

#define PIO4L 0.78539816339744830961566L

long double j0l(long double x)
{
long double xx, y, z, modulus, phase;

xx = x * x;
if( xx < 81.0L )
  {
    y = (xx - JZ1) * (xx - JZ2) * (xx -JZ3);
    y *= __polevll( xx, j0n, 7 ) / __p1evll( xx, j0d, 8 );
    return y;
  }

y = fabsl(x);
xx = 1.0/xx;
phase = __polevll( xx, phasen, 5 ) / __p1evll( xx, phased, 6 );

z = 1.0/y;
modulus = __polevll( z, modulusn, 7 ) / __p1evll( z, modulusd, 7 );

y = modulus * cosl( y -  PIO4L + z*phase) / sqrtl(y);
return y;
}


/*
y0(x) = 2/pi * log(x) * j0(x) + P(z**2)/Q(z**2)
0 <= x <= 5
Absolute error
n=7, d=7
Peak error =  8.55e-22
Relative error spread =  2.7e-1
*/
static long double y0n[] = {
 1.556909814120445353690558903926596922430E4L,
-1.464324149797947303150684329851271736158E7L,
 5.427926320587133391307283047780685085060E9L,
-9.808510181632626683952255657533575381882E11L,
 8.747842804834934784972498894571266988554E13L,
-3.461898868011666236538997563917952308530E15L,
 4.421767595991969611983299917018735928270E16L,
-1.847183690384811186958417431043844288483E16L
};
static long double y0d[] = {
/* 1.000000000000000000000000000000000000000E0 */
 1.040792201755841697888585281350416537990E3L,
 6.256391154086099882301995151394816098690E5L,
 2.686702051957904669677256742116961716912E8L,
 8.630939306572281881328204934638848292693E10L,
 2.027480766502742538762944923313331185696E13L,
 3.167750475899536301562019307293643530456E15L,
 2.502813268068711844040275540632320849671E17L
};

/*
y0(x) = (x-Y0Z1)(x-Y0Z2)(x-Y0Z3)(x-Y0Z4)P(x)/Q(x)
4.5 <= x <= 9
Absolute error
n=9, d=9
Peak error =  2.35e-20
Relative error spread =  7.8e-13
*/
static long double y059n[] = {
 2.368715538373384869795740108286354080729E-2L,
-1.472923738545276751401835498475289789724E0L,
 2.525993724177105060507377634547936257100E1L,
 7.727403527387097461580463446897153155336E1L,
-4.578271827238477598563372907206784098428E3L,
 7.051411242092171161986020461608228436219E3L,
 1.951120419910720443330833105263077652526E5L,
 6.515211089266670755621513548872432595610E5L,
-1.164760792144532266854968981115405821194E5L,
-5.566567444353735925323263816754034956079E5L
};
static long double y059d[] = {
/* 1.000000000000000000000000000000000000000E0 */
-6.235501989189125881723091161802419916592E1L,
 2.224790285641017194158141027000555212083E3L,
-5.103881883748705381186322587373400863945E4L,
 8.772616606054526158656710844751021655708E5L,
-1.096162986826467060920523203989531893118E7L,
 1.083335477747278958468238227109848215017E8L,
-7.045635226159434678832858770683824287226E8L,
 3.518324187204647941098046647734000055759E9L,
 1.173085288957116938494111248664763079367E9L
 };

#define TWOOPI 6.36619772367581343075535E-1L
#define Y0Z1 3.9576784193148578683756771869174012814186038E0L
#define Y0Z2 7.0860510603017726976236245968203524689715104E0L
#define Y0Z3 1.0222345043496417018992042276342187125994060E1L
#define Y0Z4 1.3361097473872763478267694585713786426579135E1L
#define MAXNUML 1.189731495357231765021263853E4932L

long double y0l(long double x)
{
long double xx, y, z, modulus, phase;

if( x < 0.0 )
  {
    return (-MAXNUML);
  }
xx = x * x;
if( xx < 81.0L )
  {
    if( xx < 20.25L )
      {
	y = TWOOPI * logl(x) * j0l(x);
	y += __polevll( xx, y0n, 7 ) / __p1evll( xx, y0d, 7 );
      }
    else
      {
	y = (x - Y0Z1)*(x - Y0Z2)*(x - Y0Z3)*(x - Y0Z4);
	y *= __polevll( x, y059n, 9 ) / __p1evll( x, y059d, 9 );
      }
    return y;
  }

y = fabsl(x);
xx = 1.0/xx;
phase = __polevll( xx, phasen, 5 ) / __p1evll( xx, phased, 6 );

z = 1.0/y;
modulus = __polevll( z, modulusn, 7 ) / __p1evll( z, modulusd, 7 );

y = modulus * sinl( y -  PIO4L + z*phase) / sqrtl(y);
return y;
}