1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* j0l.c
*
* Bessel function of order zero
*
*
*
* SYNOPSIS:
*
* long double x, y, j0l();
*
* y = j0l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of first kind, order zero of the argument.
*
* The domain is divided into the intervals [0, 9] and
* (9, infinity). In the first interval the rational approximation
* is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
* where r, s, t are the first three zeros of the function.
* In the second interval the expansion is in terms of the
* modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase P0(x)
* = atan(Y0(x)/J0(x)). M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
* The approximation to J0 is M0 * cos(x - pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 10000 2.7e-19 7.3e-20
*
*
*/
/* y0l.c
*
* Bessel function of the second kind, order zero
*
*
*
* SYNOPSIS:
*
* double x, y, y0l();
*
* y = y0l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind, of order
* zero, of the argument.
*
* The domain is divided into the intervals [0, 5>, [5,9> and
* [9, infinity). In the first interval a rational approximation
* R(x) is employed to compute y0(x) = R(x) + 2/pi * log(x) * j0(x).
*
* In the second interval, the approximation is
* (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
* where p, q, r, s are zeros of y0(x).
*
* The third interval uses the same approximations to modulus
* and phase as j0(x), whence y0(x) = modulus * sin(phase).
*
* ACCURACY:
*
* Absolute error, when y0(x) < 1; else relative error:
*
* arithmetic domain # trials peak rms
* IEEE 0, 30 25000 3.0e-19 7.6e-20
*
*/
/* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com). */
#include <math.h>
extern long double __polevll ( long double, long double *, int );
extern long double __p1evll ( long double, long double *, int );
/*
j0(x) = (x^2-JZ1)(x^2-JZ2)(x^2-JZ3)P(x**2)/Q(x**2)
0 <= x <= 9
Relative error
n=7, d=8
Peak error = 8.49e-22
Relative error spread = 2.2e-3
*/
static long double j0n[] = {
1.296848754518641770562068596970917461302E0L,
-3.239201943301299801017988814490822973468E3L,
3.490002040733471400106951588156446469843E6L,
-2.076797068740966813172740536268762823178E9L,
7.283696461857171054940603724292997493661E11L,
-1.487926133645291056388093978451001239544E14L,
1.620335009643150402367970862340822012501E16L,
-7.173386747526788067407034559506246493841E17L
};
static long double j0d[] = {
/* 1.000000000000000000000000000000000000000E0*/
2.281959869176887763844919265666715670624E3L,
2.910386840401647706984290219401654268412E6L,
2.608400226578100610990921977837307261661E9L,
1.752689035792859338859788285894079836315E12L,
8.879132373286001289461351204912522718368E14L,
3.265560832845194013668975527943185616740E17L,
7.881340554308432241891814409857299717887E19L,
9.466475654163919450527627558766493397282E21L
};
/*
sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2)
z(x) = 1/sqrt(x)
Relative error
n=7, d=7
Peak error = 1.80e-20
Relative error spread = 5.1e-2
*/
static long double modulusn[] = {
3.947542376069224461532136552047845797185E-1L,
6.864682945702134624126371301477343341825E0L,
1.021369773577974343843959835514109613368E1L,
7.626141421290849630522661034590426845035E0L,
2.842537511425216145635344663341056100390E0L,
7.162842530423205720961523942028933535254E-1L,
9.036664453160200052295692999857254683255E-2L,
8.461833426898867839659448202505801120140E-3L
};
static long double modulusd[] = {
/* 1.000000000000000000000000000000000000000E0 */
9.117176038171821115904394138261429005561E0L,
1.301235226061478261480860548640027632230E1L,
9.613002539386213788182145213835341179345E0L,
3.569671060989910901903283335065262208244E0L,
8.983920141407590632423345373045592707789E-1L,
1.132577931332212304985636383878157848593E-1L,
1.060533546154121770441529910796331563105E-2L
};
/*
atan(y0(x)/j0(x)) = x - pi/4 + x P(x**2)/Q(x**2)
Absolute error
n=5, d=6
Peak error = 2.80e-21
Relative error spread = 5.5e-1
*/
static long double phasen[] = {
-7.356766355393571519038139469135140406247E-1L,
-5.001635199922493694706241245828396845424E-1L,
-7.737323518141516881715220488195636681899E-2L,
-3.998893155826990642730404602407242779985E-3L,
-7.496317036829964150970102768499885677420E-5L,
-4.290885090773112963541732090289084223939E-7L
};
static long double phased[] = {
/* 1.000000000000000000000000000000000000000E0 */
7.377856408614376072744766256586157817057E0L,
4.285043297797736118068767291405925283657E0L,
6.348446472935245102890369628706013793370E-1L,
3.229866782185025048457458026131873133385E-2L,
6.014932317342190404134448927950191465063E-4L,
3.432708072618490390094952090444729316515E-6L
};
#define JZ1 5.783185962946784521175995758L
#define JZ2 30.471262343662086399078163175L
#define JZ3 7.4887006790695183444889041310136808274810908E1L
#define PIO4L 0.78539816339744830961566L
long double j0l(long double x)
{
long double xx, y, z, modulus, phase;
xx = x * x;
if( xx < 81.0L )
{
y = (xx - JZ1) * (xx - JZ2) * (xx -JZ3);
y *= __polevll( xx, j0n, 7 ) / __p1evll( xx, j0d, 8 );
return y;
}
y = fabsl(x);
xx = 1.0/xx;
phase = __polevll( xx, phasen, 5 ) / __p1evll( xx, phased, 6 );
z = 1.0/y;
modulus = __polevll( z, modulusn, 7 ) / __p1evll( z, modulusd, 7 );
y = modulus * cosl( y - PIO4L + z*phase) / sqrtl(y);
return y;
}
/*
y0(x) = 2/pi * log(x) * j0(x) + P(z**2)/Q(z**2)
0 <= x <= 5
Absolute error
n=7, d=7
Peak error = 8.55e-22
Relative error spread = 2.7e-1
*/
static long double y0n[] = {
1.556909814120445353690558903926596922430E4L,
-1.464324149797947303150684329851271736158E7L,
5.427926320587133391307283047780685085060E9L,
-9.808510181632626683952255657533575381882E11L,
8.747842804834934784972498894571266988554E13L,
-3.461898868011666236538997563917952308530E15L,
4.421767595991969611983299917018735928270E16L,
-1.847183690384811186958417431043844288483E16L
};
static long double y0d[] = {
/* 1.000000000000000000000000000000000000000E0 */
1.040792201755841697888585281350416537990E3L,
6.256391154086099882301995151394816098690E5L,
2.686702051957904669677256742116961716912E8L,
8.630939306572281881328204934638848292693E10L,
2.027480766502742538762944923313331185696E13L,
3.167750475899536301562019307293643530456E15L,
2.502813268068711844040275540632320849671E17L
};
/*
y0(x) = (x-Y0Z1)(x-Y0Z2)(x-Y0Z3)(x-Y0Z4)P(x)/Q(x)
4.5 <= x <= 9
Absolute error
n=9, d=9
Peak error = 2.35e-20
Relative error spread = 7.8e-13
*/
static long double y059n[] = {
2.368715538373384869795740108286354080729E-2L,
-1.472923738545276751401835498475289789724E0L,
2.525993724177105060507377634547936257100E1L,
7.727403527387097461580463446897153155336E1L,
-4.578271827238477598563372907206784098428E3L,
7.051411242092171161986020461608228436219E3L,
1.951120419910720443330833105263077652526E5L,
6.515211089266670755621513548872432595610E5L,
-1.164760792144532266854968981115405821194E5L,
-5.566567444353735925323263816754034956079E5L
};
static long double y059d[] = {
/* 1.000000000000000000000000000000000000000E0 */
-6.235501989189125881723091161802419916592E1L,
2.224790285641017194158141027000555212083E3L,
-5.103881883748705381186322587373400863945E4L,
8.772616606054526158656710844751021655708E5L,
-1.096162986826467060920523203989531893118E7L,
1.083335477747278958468238227109848215017E8L,
-7.045635226159434678832858770683824287226E8L,
3.518324187204647941098046647734000055759E9L,
1.173085288957116938494111248664763079367E9L
};
#define TWOOPI 6.36619772367581343075535E-1L
#define Y0Z1 3.9576784193148578683756771869174012814186038E0L
#define Y0Z2 7.0860510603017726976236245968203524689715104E0L
#define Y0Z3 1.0222345043496417018992042276342187125994060E1L
#define Y0Z4 1.3361097473872763478267694585713786426579135E1L
#define MAXNUML 1.189731495357231765021263853E4932L
long double y0l(long double x)
{
long double xx, y, z, modulus, phase;
if( x < 0.0 )
{
return (-MAXNUML);
}
xx = x * x;
if( xx < 81.0L )
{
if( xx < 20.25L )
{
y = TWOOPI * logl(x) * j0l(x);
y += __polevll( xx, y0n, 7 ) / __p1evll( xx, y0d, 7 );
}
else
{
y = (x - Y0Z1)*(x - Y0Z2)*(x - Y0Z3)*(x - Y0Z4);
y *= __polevll( x, y059n, 9 ) / __p1evll( x, y059d, 9 );
}
return y;
}
y = fabsl(x);
xx = 1.0/xx;
phase = __polevll( xx, phasen, 5 ) / __p1evll( xx, phased, 6 );
z = 1.0/y;
modulus = __polevll( z, modulusn, 7 ) / __p1evll( z, modulusd, 7 );
y = modulus * sinl( y - PIO4L + z*phase) / sqrtl(y);
return y;
}
|