1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
/* Read decimal floating point numbers.
Copyright (C) 1995, 1996 Free Software Foundation, Inc.
Contributed by Ulrich Drepper.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
/* Configuration part. These macros are defined by `strtold.c' and `strtof.c'
to produce the `long double' and `float' versions of the reader. */
#ifndef FLOAT
#define FLOAT double
#define FLT DBL
#define STRTOF strtod
#define MPN2FLOAT __mpn_construct_double
#define FLOAT_HUGE_VAL HUGE_VAL
#endif
/* End of configuration part. */
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include "../locale/localeinfo.h"
#include <math.h>
#include <stdlib.h>
#include "gmp.h"
#include "gmp-impl.h"
#include <gmp-mparam.h>
#include "longlong.h"
#include "fpioconst.h"
#define NDEBUG 1
#include <assert.h>
/* Constants we need from float.h; select the set for the FLOAT precision. */
#define MANT_DIG PASTE(FLT,_MANT_DIG)
#define DIG PASTE(FLT,_DIG)
#define MAX_EXP PASTE(FLT,_MAX_EXP)
#define MIN_EXP PASTE(FLT,_MIN_EXP)
#define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
#define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
/* Extra macros required to get FLT expanded before the pasting. */
#define PASTE(a,b) PASTE1(a,b)
#define PASTE1(a,b) a##b
/* Function to construct a floating point number from an MP integer
containing the fraction bits, a base 2 exponent, and a sign flag. */
extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
/* Definitions according to limb size used. */
#if BITS_PER_MP_LIMB == 32
# define MAX_DIG_PER_LIMB 9
# define MAX_FAC_PER_LIMB 1000000000L
#elif BITS_PER_MP_LIMB == 64
# define MAX_DIG_PER_LIMB 19
# define MAX_FAC_PER_LIMB 10000000000000000000L
#else
# error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
#endif
/* Local data structure. */
static const mp_limb _tens_in_limb[MAX_DIG_PER_LIMB + 1] =
{ 0, 10, 100,
1000, 10000, 100000,
1000000, 10000000, 100000000,
1000000000
#if BITS_PER_MP_LIMB > 32
, 10000000000, 100000000000,
1000000000000, 10000000000000, 100000000000000,
1000000000000000, 10000000000000000, 100000000000000000,
1000000000000000000, 10000000000000000000
#endif
#if BITS_PER_MP_LIMB > 64
#error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
#endif
};
#ifndef howmany
#define howmany(x,y) (((x)+((y)-1))/(y))
#endif
#define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
#define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
#define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
#define RETURN(val,end) \
do { if (endptr != 0) *endptr = (char *) (end); return val; } while (0)
/* Maximum size necessary for mpn integers to hold floating point numbers. */
#define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
+ 2)
/* Declare an mpn integer variable that big. */
#define MPN_VAR(name) mp_limb name[MPNSIZE] = {0}; mp_size_t name##size
/* Copy an mpn integer value. */
#define MPN_ASSIGN(dst, src) \
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
/* Return a floating point number of the needed type according to the given
multi-precision number after possible rounding. */
static inline FLOAT
round_and_return (mp_limb *retval, int exponent, int negative,
mp_limb round_limb, mp_size_t round_bit, int more_bits)
{
if (exponent < MIN_EXP - 1)
{
mp_size_t shift = MIN_EXP - 1 - exponent;
if (shift > MANT_DIG)
{
errno = EDOM;
return 0.0;
}
more_bits |= (round_limb & ((1 << round_bit) - 1)) != 0;
if (shift == MANT_DIG)
/* This is a special case to handle the very seldom case where
the mantissa will be empty after the shift. */
{
int i;
round_limb = retval[RETURN_LIMB_SIZE - 1];
round_bit = BITS_PER_MP_LIMB - 1;
for (i = 0; i < RETURN_LIMB_SIZE; ++i)
more_bits |= retval[i] != 0;
MPN_ZERO (retval, RETURN_LIMB_SIZE);
}
else if (shift >= BITS_PER_MP_LIMB)
{
int i;
round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
round_bit = (shift - 1) % BITS_PER_MP_LIMB;
for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
more_bits |= retval[i] != 0;
more_bits |= (round_limb & ((1 << round_bit) - 1)) != 0;
(void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
shift % BITS_PER_MP_LIMB);
MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
shift / BITS_PER_MP_LIMB);
}
else if (shift > 0)
{
round_limb = retval[0];
round_bit = shift - 1;
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
}
exponent = MIN_EXP - 2;
}
if ((round_limb & (1 << round_bit)) != 0
&& (more_bits || (retval[0] & 1) != 0
|| (round_limb & ((1 << round_bit) - 1)) != 0))
{
mp_limb cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
(retval[RETURN_LIMB_SIZE - 1]
& (1 << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
{
++exponent;
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
retval[RETURN_LIMB_SIZE - 1] |= 1 << ((MANT_DIG - 1)
% BITS_PER_MP_LIMB);
}
else if (exponent == MIN_EXP - 2
&& (retval[RETURN_LIMB_SIZE - 1]
& (1 << ((MANT_DIG - 1) % BITS_PER_MP_LIMB))) != 0)
/* The number was denormalized but now normalized. */
exponent = MIN_EXP - 1;
}
if (exponent > MAX_EXP)
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
return MPN2FLOAT (retval, exponent, negative);
}
/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
into N. Return the size of the number limbs in NSIZE at the first
character od the string that is not part of the integer as the function
value. If the EXPONENT is small enough to be taken as an additional
factor for the resulting number (see code) multiply by it. */
static inline const char *
str_to_mpn (const char *str, int digcnt, mp_limb *n, mp_size_t *nsize,
int *exponent)
{
/* Number of digits for actual limb. */
int cnt = 0;
mp_limb low = 0;
mp_limb base;
*nsize = 0;
assert (digcnt > 0);
do
{
if (cnt == MAX_DIG_PER_LIMB)
{
if (*nsize == 0)
n[0] = low;
else
{
mp_limb cy;
cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
cy += __mpn_add_1 (n, n, *nsize, low);
if (cy != 0)
n[*nsize] = cy;
}
++(*nsize);
cnt = 0;
low = 0;
}
/* There might be thousands separators or radix characters in the string.
But these all can be ignored because we know the format of the number
is correct and we have an exact number of characters to read. */
while (!isdigit (*str))
++str;
low = low * 10 + *str++ - '0';
++cnt;
}
while (--digcnt > 0);
if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
{
low *= _tens_in_limb[*exponent];
base = _tens_in_limb[cnt + *exponent];
*exponent = 0;
}
else
base = _tens_in_limb[cnt];
if (*nsize == 0)
{
n[0] = low;
*nsize = 1;
}
else
{
mp_limb cy;
cy = __mpn_mul_1 (n, n, *nsize, base);
cy += __mpn_add_1 (n, n, *nsize, low);
if (cy != 0)
n[(*nsize)++] = cy;
}
return str;
}
/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
with the COUNT most significant bits of LIMB.
Tege doesn't like this function so I have to write it here myself. :)
--drepper */
static inline void
__mpn_lshift_1 (mp_limb *ptr, mp_size_t size, unsigned int count, mp_limb limb)
{
if (count == BITS_PER_MP_LIMB)
{
/* Optimize the case of shifting by exactly a word:
just copy words, with no actual bit-shifting. */
mp_size_t i;
for (i = size - 1; i > 0; --i)
ptr[i] = ptr[i - 1];
ptr[0] = limb;
}
else
{
(void) __mpn_lshift (ptr, ptr, size, count);
ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
}
}
#define INTERNAL(x) INTERNAL1(x)
#define INTERNAL1(x) __##x##_internal
/* This file defines a function to check for correct grouping. */
#include "grouping.h"
/* Return a floating point number with the value of the given string NPTR.
Set *ENDPTR to the character after the last used one. If the number is
smaller than the smallest representable number, set `errno' to ERANGE and
return 0.0. If the number is too big to be represented, set `errno' to
ERANGE and return HUGE_VAL with the approriate sign. */
FLOAT
INTERNAL (STRTOF) (nptr, endptr, group)
const char *nptr;
char **endptr;
int group;
{
int negative; /* The sign of the number. */
MPN_VAR (num); /* MP representation of the number. */
int exponent; /* Exponent of the number. */
/* When we have to compute fractional digits we form a fraction with a
second multi-precision number (and we sometimes need a second for
temporary results). */
MPN_VAR (den);
/* Representation for the return value. */
mp_limb retval[RETURN_LIMB_SIZE];
/* Number of bits currently in result value. */
int bits;
/* Running pointer after the last character processed in the string. */
const char *cp, *tp;
/* Start of significant part of the number. */
const char *startp, *start_of_digits;
/* Points at the character following the integer and fractional digits. */
const char *expp;
/* Total number of digit and number of digits in integer part. */
int dig_no, int_no, lead_zero;
/* Contains the last character read. */
char c;
/* The radix character of the current locale. */
wchar_t decimal;
/* The thousands character of the current locale. */
wchar_t thousands;
/* The numeric grouping specification of the current locale,
in the format described in <locale.h>. */
const char *grouping;
if (group)
{
grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
if (*grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
/* Figure out the thousands separator character. */
if (mbtowc (&thousands, _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP),
strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP))) <= 0)
thousands = (wchar_t) *_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
if (thousands == L'\0')
grouping = NULL;
}
}
else
{
grouping = NULL;
thousands = L'\0';
}
/* Find the locale's decimal point character. */
if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
/* Prepare number representation. */
exponent = 0;
negative = 0;
bits = 0;
/* Parse string to get maximal legal prefix. We need the number of
characters of the integer part, the fractional part and the exponent. */
cp = nptr - 1;
/* Ignore leading white space. */
do
c = *++cp;
while (isspace (c));
/* Get sign of the result. */
if (c == '-')
{
negative = 1;
c = *++cp;
}
else if (c == '+')
c = *++cp;
/* Return 0.0 if no legal string is found.
No character is used even if a sign was found. */
if (!isdigit (c) && (c != decimal || !isdigit (cp[1])))
RETURN (0.0, nptr);
/* Record the start of the digits, in case we will check their grouping. */
start_of_digits = startp = cp;
/* Ignore leading zeroes. This helps us to avoid useless computations. */
while (c == '0' || (thousands != L'\0' && c == thousands))
c = *++cp;
/* If no other digit but a '0' is found the result is 0.0.
Return current read pointer. */
if (!isdigit (c) && c != decimal)
{
tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
/* If TP is at the start of the digits, there was no correctly
grouped prefix of the string; so no number found. */
RETURN (0.0, tp == start_of_digits ? nptr : tp);
}
/* Remember first significant digit and read following characters until the
decimal point, exponent character or any non-FP number character. */
startp = cp;
dig_no = 0;
while (dig_no < NDIG ||
/* If parsing grouping info, keep going past useful digits
so we can check all the grouping separators. */
grouping)
{
if (isdigit (c))
++dig_no;
else if (thousands == L'\0' || c != thousands)
/* Not a digit or separator: end of the integer part. */
break;
c = *++cp;
}
if (grouping && dig_no > 0)
{
/* Check the grouping of the digits. */
tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
if (cp != tp)
{
/* Less than the entire string was correctly grouped. */
if (tp == start_of_digits)
/* No valid group of numbers at all: no valid number. */
RETURN (0.0, nptr);
if (tp < startp)
/* The number is validly grouped, but consists
only of zeroes. The whole value is zero. */
RETURN (0.0, tp);
/* Recompute DIG_NO so we won't read more digits than
are properly grouped. */
cp = tp;
dig_no = 0;
for (tp = startp; tp < cp; ++tp)
if (isdigit (*tp))
++dig_no;
int_no = dig_no;
lead_zero = 0;
goto number_parsed;
}
}
if (dig_no >= NDIG)
/* Too many digits to be representable. Assigning this to EXPONENT
allows us to read the full number but return HUGE_VAL after parsing. */
exponent = MAX_10_EXP;
/* We have the number digits in the integer part. Whether these are all or
any is really a fractional digit will be decided later. */
int_no = dig_no;
lead_zero = int_no == 0 ? -1 : 0;
/* Read the fractional digits. A special case are the 'american style'
numbers like `16.' i.e. with decimal but without trailing digits. */
if (c == decimal)
while (isdigit (c = *++cp))
{
if (c != '0' && lead_zero == -1)
lead_zero = dig_no - int_no;
++dig_no;
}
assert (lead_zero != -1);
/* Remember start of exponent (if any). */
expp = cp;
/* Read exponent. */
if (tolower (c) == 'e')
{
int exp_negative = 0;
c = *++cp;
if (c == '-')
{
exp_negative = 1;
c = *++cp;
}
else if (c == '+')
c = *++cp;
if (isdigit (c))
{
int exp_limit;
/* Get the exponent limit. */
exp_limit = exp_negative ?
-MIN_10_EXP + MANT_DIG - int_no :
MAX_10_EXP - int_no + lead_zero;
do
{
exponent *= 10;
if (exponent > exp_limit)
/* The exponent is too large/small to represent a valid
number. */
{
FLOAT retval;
/* Overflow or underflow. */
errno = ERANGE;
retval = (exp_negative ? 0.0 :
negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
/* Accept all following digits as part of the exponent. */
do
++cp;
while (isdigit (*cp));
RETURN (retval, cp);
/* NOTREACHED */
}
exponent += c - '0';
c = *++cp;
}
while (isdigit (c));
if (exp_negative)
exponent = -exponent;
}
else
cp = expp;
}
/* We don't want to have to work with trailing zeroes after the radix. */
if (dig_no > int_no)
{
while (expp[-1] == '0')
{
--expp;
--dig_no;
}
assert (dig_no >= int_no);
}
number_parsed:
/* The whole string is parsed. Store the address of the next character. */
if (endptr)
*endptr = (char *) cp;
if (dig_no == 0)
return 0.0;
if (lead_zero)
{
/* Find the decimal point */
while (*startp != decimal) startp++;
startp += lead_zero + 1;
exponent -= lead_zero;
dig_no -= lead_zero;
}
/* Now we have the number of digits in total and the integer digits as well
as the exponent and its sign. We can decide whether the read digits are
really integer digits or belong to the fractional part; i.e. we normalize
123e-2 to 1.23. */
{
register int incr = exponent < 0 ? MAX (-int_no, exponent)
: MIN (dig_no - int_no, exponent);
int_no += incr;
exponent -= incr;
}
if (int_no + exponent > MAX_10_EXP + 1)
{
errno = ERANGE;
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
}
if (exponent < MIN_10_EXP - (DIG + 1))
{
errno = ERANGE;
return 0.0;
}
if (int_no > 0)
{
/* Read the integer part as a multi-precision number to NUM. */
startp = str_to_mpn (startp, int_no, num, &numsize, &exponent);
if (exponent > 0)
{
/* We now multiply the gained number by the given power of ten. */
mp_limb *psrc = num;
mp_limb *pdest = den;
int expbit = 1;
const struct mp_power *ttab = &_fpioconst_pow10[0];
do
{
if ((exponent & expbit) != 0)
{
mp_limb cy;
exponent ^= expbit;
/* FIXME: not the whole multiplication has to be done.
If we have the needed number of bits we only need the
information whether more non-zero bits follow. */
if (numsize >= ttab->arraysize - 2)
cy = __mpn_mul (pdest, psrc, numsize,
&ttab->array[2], ttab->arraysize - 2);
else
cy = __mpn_mul (pdest, &ttab->array[2],
ttab->arraysize - 2,
psrc, numsize);
numsize += ttab->arraysize - 2;
if (cy == 0)
--numsize;
SWAP (psrc, pdest);
}
expbit <<= 1;
++ttab;
}
while (exponent != 0);
if (psrc == den)
memcpy (num, den, numsize * sizeof (mp_limb));
}
/* Determine how many bits of the result we already have. */
count_leading_zeros (bits, num[numsize - 1]);
bits = numsize * BITS_PER_MP_LIMB - bits;
/* Now we know the exponent of the number in base two.
Check it against the maximum possible exponent. */
if (bits > MAX_EXP)
{
errno = ERANGE;
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
}
/* We have already the first BITS bits of the result. Together with
the information whether more non-zero bits follow this is enough
to determine the result. */
if (bits > MANT_DIG)
{
int i;
const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
: least_idx;
const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
: least_bit - 1;
if (least_bit == 0)
memcpy (retval, &num[least_idx],
RETURN_LIMB_SIZE * sizeof (mp_limb));
else
{
for (i = least_idx; i < numsize - 1; ++i)
retval[i - least_idx] = (num[i] >> least_bit)
| (num[i + 1]
<< (BITS_PER_MP_LIMB - least_bit));
if (i - least_idx < RETURN_LIMB_SIZE)
retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
}
/* Check whether any limb beside the ones in RETVAL are non-zero. */
for (i = 0; num[i] == 0; ++i)
;
return round_and_return (retval, bits - 1, negative,
num[round_idx], round_bit,
int_no < dig_no || i < round_idx);
/* NOTREACHED */
}
else if (dig_no == int_no)
{
const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
if (target_bit == is_bit)
{
memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
numsize * sizeof (mp_limb));
/* FIXME: the following loop can be avoided if we assume a
maximal MANT_DIG value. */
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
}
else if (target_bit > is_bit)
{
(void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
num, numsize, target_bit - is_bit);
/* FIXME: the following loop can be avoided if we assume a
maximal MANT_DIG value. */
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
}
else
{
mp_limb cy;
assert (numsize < RETURN_LIMB_SIZE);
cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
num, numsize, is_bit - target_bit);
retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
/* FIXME: the following loop can be avoided if we assume a
maximal MANT_DIG value. */
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
}
return round_and_return (retval, bits - 1, negative, 0, 0, 0);
/* NOTREACHED */
}
/* Store the bits we already have. */
memcpy (retval, num, numsize * sizeof (mp_limb));
#if RETURN_LIMB_SIZE > 1
if (numsize < RETURN_LIMB_SIZE)
retval[numsize] = 0;
#endif
}
/* We have to compute at least some of the fractional digits. */
{
/* We construct a fraction and the result of the division gives us
the needed digits. The denominator is 1.0 multiplied by the
exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
123e-6 gives 123 / 1000000. */
int expbit;
int cnt;
int neg_exp;
int more_bits;
mp_limb cy;
mp_limb *psrc = den;
mp_limb *pdest = num;
const struct mp_power *ttab = &_fpioconst_pow10[0];
assert (dig_no > int_no && exponent <= 0);
/* For the fractional part we need not process too much digits. One
decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
ceil(BITS / 3) =: N
digits we should have enough bits for the result. The remaining
decimal digits give us the information that more bits are following.
This can be used while rounding. (One added as a safety margin.) */
if (dig_no - int_no > (MANT_DIG - bits + 2) / 3 + 1)
{
dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 1;
more_bits = 1;
}
else
more_bits = 0;
neg_exp = dig_no - int_no - exponent;
/* Construct the denominator. */
densize = 0;
expbit = 1;
do
{
if ((neg_exp & expbit) != 0)
{
mp_limb cy;
neg_exp ^= expbit;
if (densize == 0)
memcpy (psrc, &ttab->array[2],
(densize = ttab->arraysize - 2) * sizeof (mp_limb));
else
{
cy = __mpn_mul (pdest, &ttab->array[2], ttab->arraysize - 2,
psrc, densize);
densize += ttab->arraysize - 2;
if (cy == 0)
--densize;
SWAP (psrc, pdest);
}
}
expbit <<= 1;
++ttab;
}
while (neg_exp != 0);
if (psrc == num)
memcpy (den, num, densize * sizeof (mp_limb));
/* Read the fractional digits from the string. */
(void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent);
/* We now have to shift both numbers so that the highest bit in the
denominator is set. In the same process we copy the numerator to
a high place in the array so that the division constructs the wanted
digits. This is done by a "quasi fix point" number representation.
num: ddddddddddd . 0000000000000000000000
|--- m ---|
den: ddddddddddd n >= m
|--- n ---|
*/
count_leading_zeros (cnt, den[densize - 1]);
(void) __mpn_lshift (den, den, densize, cnt);
cy = __mpn_lshift (num, num, numsize, cnt);
if (cy != 0)
num[numsize++] = cy;
/* Now we are ready for the division. But it is not necessary to
do a full multi-precision division because we only need a small
number of bits for the result. So we do not use __mpn_divmod
here but instead do the division here by hand and stop whenever
the needed number of bits is reached. The code itself comes
from the GNU MP Library by Torbj<o:>rn Granlund. */
exponent = bits;
switch (densize)
{
case 1:
{
mp_limb d, n, quot;
int used = 0;
n = num[0];
d = den[0];
assert (numsize == 1 && n < d);
do
{
udiv_qrnnd (quot, n, n, 0, d);
#define got_limb \
if (bits == 0) \
{ \
register int cnt; \
if (quot == 0) \
cnt = BITS_PER_MP_LIMB; \
else \
count_leading_zeros (cnt, quot); \
exponent -= cnt; \
if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
{ \
used = MANT_DIG + cnt; \
retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
bits = MANT_DIG + 1; \
} \
else \
{ \
/* Note that we only clear the second element. */ \
/* The conditional is determined at compile time. */ \
if (RETURN_LIMB_SIZE > 1) \
retval[1] = 0; \
retval[0] = quot; \
bits = -cnt; \
} \
} \
else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
quot); \
else \
{ \
used = MANT_DIG - bits; \
if (used > 0) \
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
} \
bits += BITS_PER_MP_LIMB
got_limb;
}
while (bits <= MANT_DIG);
return round_and_return (retval, exponent - 1, negative,
quot, BITS_PER_MP_LIMB - 1 - used,
more_bits || n != 0);
}
case 2:
{
mp_limb d0, d1, n0, n1;
mp_limb quot = 0;
int used = 0;
d0 = den[0];
d1 = den[1];
if (numsize < densize)
{
if (num[0] >= d1)
{
/* The nominator of the number occupies fewer bits than
the denominator but the one limb is bigger than the
high limb of the nominator. */
n1 = 0;
n0 = num[0];
}
else
{
if (bits <= 0)
exponent -= BITS_PER_MP_LIMB;
else
{
if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
BITS_PER_MP_LIMB, 0);
else
{
used = MANT_DIG - bits;
if (used > 0)
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
}
bits += BITS_PER_MP_LIMB;
}
n1 = num[0];
n0 = 0;
}
}
else
{
n1 = num[1];
n0 = num[0];
}
while (bits <= MANT_DIG)
{
mp_limb r;
if (n1 == d1)
{
/* QUOT should be either 111..111 or 111..110. We need
special treatment of this rare case as normal division
would give overflow. */
quot = ~(mp_limb) 0;
r = n0 + d1;
if (r < d1) /* Carry in the addition? */
{
add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
goto have_quot;
}
n1 = d0 - (d0 != 0);
n0 = -d0;
}
else
{
udiv_qrnnd (quot, r, n1, n0, d1);
umul_ppmm (n1, n0, d0, quot);
}
q_test:
if (n1 > r || (n1 == r && n0 > 0))
{
/* The estimated QUOT was too large. */
--quot;
sub_ddmmss (n1, n0, n1, n0, 0, d0);
r += d1;
if (r >= d1) /* If not carry, test QUOT again. */
goto q_test;
}
sub_ddmmss (n1, n0, r, 0, n1, n0);
have_quot:
got_limb;
}
return round_and_return (retval, exponent - 1, negative,
quot, BITS_PER_MP_LIMB - 1 - used,
more_bits || n1 != 0 || n0 != 0);
}
default:
{
int i;
mp_limb cy, dX, d1, n0, n1;
mp_limb quot = 0;
int used = 0;
dX = den[densize - 1];
d1 = den[densize - 2];
/* The division does not work if the upper limb of the two-limb
numerator is greater than the denominator. */
if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
num[numsize++] = 0;
if (numsize < densize)
{
mp_size_t empty = densize - numsize;
if (bits <= 0)
{
register int i;
for (i = numsize; i > 0; --i)
num[i + empty] = num[i - 1];
MPN_ZERO (num, empty + 1);
exponent -= empty * BITS_PER_MP_LIMB;
}
else
{
if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
{
/* We make a difference here because the compiler
cannot optimize the `else' case that good and
this reflects all currently used FLOAT types
and GMP implementations. */
register int i;
#if RETURN_LIMB_SIZE <= 2
assert (empty == 1);
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
BITS_PER_MP_LIMB, 0);
#else
for (i = RETURN_LIMB_SIZE; i > empty; --i)
retval[i] = retval[i - empty];
#endif
retval[1] = 0;
for (i = numsize; i > 0; --i)
num[i + empty] = num[i - 1];
MPN_ZERO (num, empty + 1);
}
else
{
used = MANT_DIG - bits;
if (used >= BITS_PER_MP_LIMB)
{
register int i;
(void) __mpn_lshift (&retval[used
/ BITS_PER_MP_LIMB],
retval, RETURN_LIMB_SIZE,
used % BITS_PER_MP_LIMB);
for (i = used / BITS_PER_MP_LIMB; i >= 0; --i)
retval[i] = 0;
}
else if (used > 0)
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
}
bits += empty * BITS_PER_MP_LIMB;
}
}
else
{
int i;
assert (numsize == densize);
for (i = numsize; i > 0; --i)
num[i] = num[i - 1];
}
den[densize] = 0;
n0 = num[densize];
while (bits <= MANT_DIG)
{
if (n0 == dX)
/* This might over-estimate QUOT, but it's probably not
worth the extra code here to find out. */
quot = ~(mp_limb) 0;
else
{
mp_limb r;
udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
umul_ppmm (n1, n0, d1, quot);
while (n1 > r || (n1 == r && n0 > num[densize - 2]))
{
--quot;
r += dX;
if (r < dX) /* I.e. "carry in previous addition?" */
break;
n1 -= n0 < d1;
n0 -= d1;
}
}
/* Possible optimization: We already have (q * n0) and (1 * n1)
after the calculation of QUOT. Taking advantage of this, we
could make this loop make two iterations less. */
cy = __mpn_submul_1 (num, den, densize + 1, quot);
if (num[densize] != cy)
{
cy = __mpn_add_n (num, num, den, densize);
assert (cy != 0);
--quot;
}
n0 = num[densize] = num[densize - 1];
for (i = densize - 1; i > 0; --i)
num[i] = num[i - 1];
got_limb;
}
for (i = densize; num[i] == 0 && i >= 0; --i)
;
return round_and_return (retval, exponent - 1, negative,
quot, BITS_PER_MP_LIMB - 1 - used,
more_bits || i >= 0);
}
}
}
/* NOTREACHED */
}
FLOAT
#ifdef __STRTOF
__STRTOF
#else
STRTOF
#endif
(nptr, endptr)
const char *nptr;
char **endptr;
{
return INTERNAL (STRTOF) (nptr, endptr, 0);
}
|