1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* drand.c
*
* Pseudorandom number generator
*
*
*
* SYNOPSIS:
*
* double y, drand();
*
* drand( &y );
*
*
*
* DESCRIPTION:
*
* Yields a random number 1.0 <= y < 2.0.
*
* The three-generator congruential algorithm by Brian
* Wichmann and David Hill (BYTE magazine, March, 1987,
* pp 127-8) is used. The period, given by them, is
* 6953607871644.
*
* Versions invoked by the different arithmetic compile
* time options DEC, IBMPC, and MIEEE, produce
* approximately the same sequences, differing only in the
* least significant bits of the numbers. The UNK option
* implements the algorithm as recommended in the BYTE
* article. It may be used on all computers. However,
* the low order bits of a double precision number may
* not be adequately random, and may vary due to arithmetic
* implementation details on different computers.
*
* The other compile options generate an additional random
* integer that overwrites the low order bits of the double
* precision number. This reduces the period by a factor of
* two but tends to overcome the problems mentioned.
*
*/
#include "mconf.h"
/* Three-generator random number algorithm
* of Brian Wichmann and David Hill
* BYTE magazine, March, 1987 pp 127-8
*
* The period, given by them, is (p-1)(q-1)(r-1)/4 = 6.95e12.
*/
static int sx = 1;
static int sy = 10000;
static int sz = 3000;
static union {
double d;
unsigned short s[4];
} unkans;
/* This function implements the three
* congruential generators.
*/
static int ranwh()
{
int r, s;
/* sx = sx * 171 mod 30269 */
r = sx/177;
s = sx - 177 * r;
sx = 171 * s - 2 * r;
if( sx < 0 )
sx += 30269;
/* sy = sy * 172 mod 30307 */
r = sy/176;
s = sy - 176 * r;
sy = 172 * s - 35 * r;
if( sy < 0 )
sy += 30307;
/* sz = 170 * sz mod 30323 */
r = sz/178;
s = sz - 178 * r;
sz = 170 * s - 63 * r;
if( sz < 0 )
sz += 30323;
/* The results are in static sx, sy, sz. */
return 0;
}
/* drand.c
*
* Random double precision floating point number between 1 and 2.
*
* C callable:
* drand( &x );
*/
int drand( a )
double *a;
{
unsigned short r;
#ifdef DEC
unsigned short s, t;
#endif
/* This algorithm of Wichmann and Hill computes a floating point
* result:
*/
ranwh();
unkans.d = sx/30269.0 + sy/30307.0 + sz/30323.0;
r = unkans.d;
unkans.d -= r;
unkans.d += 1.0;
/* if UNK option, do nothing further.
* Otherwise, make a random 16 bit integer
* to overwrite the least significant word
* of unkans.
*/
#ifdef UNK
/* do nothing */
#else
ranwh();
r = sx * sy + sz;
#endif
#ifdef DEC
/* To make the numbers as similar as possible
* in all arithmetics, the random integer has
* to be inserted 3 bits higher up in a DEC number.
* An alternative would be put it 3 bits lower down
* in all the other number types.
*/
s = unkans.s[2];
t = s & 07; /* save these bits to put in at the bottom */
s &= 0177770;
s |= (r >> 13) & 07;
unkans.s[2] = s;
t |= r << 3;
unkans.s[3] = t;
#endif
#ifdef IBMPC
unkans.s[0] = r;
#endif
#ifdef MIEEE
unkans.s[3] = r;
#endif
*a = unkans.d;
return 0;
}
|