1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
/* mtst.c
Consistency tests for math functions.
To get strict rounding rules on a 386 or 68000 computer,
define SETPREC to 1.
With NTRIALS=10000, the following are typical results for
IEEE double precision arithmetic.
Consistency test of math functions.
Max and rms relative errors for 10000 random arguments.
x = cbrt( cube(x) ): max = 0.00E+00 rms = 0.00E+00
x = atan( tan(x) ): max = 2.21E-16 rms = 3.27E-17
x = sin( asin(x) ): max = 2.13E-16 rms = 2.95E-17
x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00
x = log( exp(x) ): max = 1.11E-16 A rms = 4.35E-18 A
x = tanh( atanh(x) ): max = 2.22E-16 rms = 2.43E-17
x = asinh( sinh(x) ): max = 2.05E-16 rms = 3.49E-18
x = acosh( cosh(x) ): max = 1.43E-15 A rms = 1.54E-17 A
x = log10( exp10(x) ): max = 5.55E-17 A rms = 1.27E-18 A
x = pow( pow(x,a),1/a ): max = 7.60E-14 rms = 1.05E-15
x = cos( acos(x) ): max = 2.22E-16 A rms = 6.90E-17 A
*/
/*
Cephes Math Library Release 2.1: December, 1988
Copyright 1984, 1987, 1988 by Stephen L. Moshier
Modified 1995 by John C. Bowman <bowman@hagar.ph.utexas.edu> to test
80387/80486 inline-math and libm routines.
*/
#include "mconf.h"
#define SETPREC 0
#define NTRIALS 10000
#define STRTST 0
#define WTRIALS (NTRIALS/5)
#ifdef __NO_MATH_INLINES
#ifndef ANSIPROT
double fabs(), sqrt(), cbrt(), exp(), log();
double exp10(), log10(), tan(), atan();
double sin(), asin(), cos(), acos(), pow();
double tanh(), atanh(), sinh(), asinh(), cosh(), acosh();
#endif
extern double PI;
#else
#define __MATH_EXTENSIONS
#include<math.h>
#endif
#if SETPREC
int dprec();
#endif
int drand();
void exit();
int printf();
/* Provide inverses for square root and cube root: */
double square(x)
double x;
{
return( x * x );
}
double cube(x)
double x;
{
return( x * x * x );
}
double exp10(x)
double x;
{
return pow(10.0,x);
}
/* lookup table for each function */
struct fundef
{
char *nam1; /* the function */
double (*name )();
char *nam2; /* its inverse */
double (*inv )();
int nargs; /* number of function arguments */
int tstyp; /* type code of the function */
long ctrl; /* relative error flag */
double arg1w; /* width of domain for 1st arg */
double arg1l; /* lower bound domain 1st arg */
long arg1f; /* flags, e.g. integer arg */
double arg2w; /* same info for args 2, 3, 4 */
double arg2l;
long arg2f;
/*
double arg3w;
double arg3l;
long arg3f;
double arg4w;
double arg4l;
long arg4f;
*/
};
/* fundef.ctrl bits: */
#define RELERR 1
/* fundef.tstyp test types: */
#define POWER 1
#define ELLIP 2
#define GAMMA 3
#define WRONK1 4
#define WRONK2 5
#define WRONK3 6
/* fundef.argNf argument flag bits: */
#define INT 2
#define EXPSCAL 4
extern double MINLOG;
extern double MAXLOG;
extern double PIO2;
/*
define MINLOG -170.0
define MAXLOG +170.0
define PI 3.14159265358979323846
define PIO2 1.570796326794896619
*/
#define NTESTS 11
struct fundef defs[NTESTS] = {
{" cube", cube, " cbrt", cbrt, 1, 0, 1, 2002.0, -1001.0, 0,
0.0, 0.0, 0},
{" tan", tan, " atan", atan, 1, 0, 1, 0.0, 0.0, 0,
0.0, 0.0, 0},
{" asin", asin, " sin", sin, 1, 0, 1, 2.0, -1.0, 0,
0.0, 0.0, 0},
{"square", square, " sqrt", sqrt, 1, 0, 1, 170.0, -85.0, EXPSCAL,
0.0, 0.0, 0},
{" exp", exp, " log", log, 1, 0, 0, 340.0, -170.0, 0,
0.0, 0.0, 0},
{" atanh", atanh, " tanh", tanh, 1, 0, 1, 2.0, -1.0, 0,
0.0, 0.0, 0},
{" sinh", sinh, " asinh", asinh, 1, 0, 1, 340.0, 0.0, 0,
0.0, 0.0, 0},
{" cosh", cosh, " acosh", acosh, 1, 0, 0, 340.0, 0.0, 0,
0.0, 0.0, 0},
{" exp10", exp10, " log10", log10, 1, 0, 0, 340.0, -170.0, 0,
0.0, 0.0, 0},
{"pow", pow, "pow", pow, 2, POWER, 1, 21.0, 0.0, 0,
42.0, -21.0, 0},
{" acos", acos, " cos", cos, 1, 0, 0, 2.0, -1.0, 0,
0.0, 0.0, 0},
};
static char *headrs[] = {
"x = %s( %s(x) ): ",
"x = %s( %s(x,a),1/a ): ", /* power */
"Legendre %s, %s: ", /* ellip */
"%s(x) = log(%s(x)): ", /* gamma */
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: "
};
static double yy1 = 0.0;
static double y2 = 0.0;
static double y3 = 0.0;
static double y4 = 0.0;
static double a = 0.0;
static double x = 0.0;
static double y = 0.0;
static double z = 0.0;
static double e = 0.0;
static double max = 0.0;
static double rmsa = 0.0;
static double rms = 0.0;
static double ave = 0.0;
void main()
{
double (*fun )();
double (*ifun )();
struct fundef *d;
int i, k, itst;
int m, ntr;
#if SETPREC
dprec(); /* set coprocessor precision */
#endif
ntr = NTRIALS;
printf( "Consistency test of math functions.\n" );
printf( "Max and rms relative errors for %d random arguments.\n",
ntr );
/* Initialize machine dependent parameters: */
defs[1].arg1w = PI;
defs[1].arg1l = -PI/2.0;
/* Microsoft C has trouble with denormal numbers. */
#if 0
defs[3].arg1w = MAXLOG;
defs[3].arg1l = -MAXLOG/2.0;
defs[4].arg1w = 2*MAXLOG;
defs[4].arg1l = -MAXLOG;
#endif
defs[6].arg1w = 2.0*MAXLOG;
defs[6].arg1l = -MAXLOG;
defs[7].arg1w = MAXLOG;
defs[7].arg1l = 0.0;
/* Outer loop, on the test number: */
for( itst=STRTST; itst<NTESTS; itst++ )
{
d = &defs[itst];
k = 0;
m = 0;
max = 0.0;
rmsa = 0.0;
ave = 0.0;
fun = d->name;
ifun = d->inv;
/* Absolute error criterion starts with gamma function
* (put all such at end of table)
*/
if( d->tstyp == GAMMA )
printf( "Absolute error criterion (but relative if >1):\n" );
/* Smaller number of trials for Wronksians
* (put them at end of list)
*/
if( d->tstyp == WRONK1 )
{
ntr = WTRIALS;
printf( "Absolute error and only %d trials:\n", ntr );
}
printf( headrs[d->tstyp], d->nam2, d->nam1 );
for( i=0; i<ntr; i++ )
{
m++;
/* make random number(s) in desired range(s) */
switch( d->nargs )
{
default:
goto illegn;
case 2:
drand( &a );
a = d->arg2w * ( a - 1.0 ) + d->arg2l;
if( d->arg2f & EXPSCAL )
{
a = exp(a);
drand( &y2 );
a -= 1.0e-13 * a * y2;
}
if( d->arg2f & INT )
{
k = a + 0.25;
a = k;
}
case 1:
drand( &x );
x = d->arg1w * ( x - 1.0 ) + d->arg1l;
if( d->arg1f & EXPSCAL )
{
x = exp(x);
drand( &a );
x += 1.0e-13 * x * a;
}
}
/* compute function under test */
switch( d->nargs )
{
case 1:
switch( d->tstyp )
{
case ELLIP:
yy1 = ( *(fun) )(x);
y2 = ( *(fun) )(1.0-x);
y3 = ( *(ifun) )(x);
y4 = ( *(ifun) )(1.0-x);
break;
#if 0
case GAMMA:
y = lgam(x);
x = log( gamma(x) );
break;
#endif
default:
z = ( *(fun) )(x);
y = ( *(ifun) )(z);
}
break;
case 2:
if( d->arg2f & INT )
{
switch( d->tstyp )
{
case WRONK1:
yy1 = (*fun)( k, x ); /* jn */
y2 = (*fun)( k+1, x );
y3 = (*ifun)( k, x ); /* yn */
y4 = (*ifun)( k+1, x );
break;
case WRONK2:
yy1 = (*fun)( a, x ); /* iv */
y2 = (*fun)( a+1.0, x );
y3 = (*ifun)( k, x ); /* kn */
y4 = (*ifun)( k+1, x );
break;
default:
z = (*fun)( k, x );
y = (*ifun)( k, z );
}
}
else
{
if( d->tstyp == POWER )
{
z = (*fun)( x, a );
y = (*ifun)( z, 1.0/a );
}
else
{
z = (*fun)( a, x );
y = (*ifun)( a, z );
}
}
break;
default:
illegn:
printf( "Illegal nargs= %d", d->nargs );
exit(1);
}
switch( d->tstyp )
{
case WRONK1:
e = (y2*y3 - yy1*y4) - 2.0/(PI*x); /* Jn, Yn */
break;
case WRONK2:
e = (y2*y3 + yy1*y4) - 1.0/x; /* In, Kn */
break;
case ELLIP:
e = (yy1-y3)*y4 + y3*y2 - PIO2;
break;
default:
e = y - x;
break;
}
if( d->ctrl & RELERR )
e /= x;
else
{
if( fabs(x) > 1.0 )
e /= x;
}
ave += e;
/* absolute value of error */
if( e < 0 )
e = -e;
/* peak detect the error */
if( e > max )
{
max = e;
if( e > 1.0e-10 )
{
printf("x %.6E z %.6E y %.6E max %.4E\n",
x, z, y, max);
if( d->tstyp == POWER )
{
printf( "a %.6E\n", a );
}
if( d->tstyp >= WRONK1 )
{
printf( "yy1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",
yy1, y2, y3, y4, k, x );
}
}
/*
printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);
printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);
printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);
printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);
printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",
a, b, c, x, y, max, n);
*/
}
/* accumulate rms error */
e *= 1.0e16; /* adjust range */
rmsa += e * e; /* accumulate the square of the error */
}
/* report after NTRIALS trials */
rms = 1.0e-16 * sqrt( rmsa/m );
if(d->ctrl & RELERR)
printf(" max = %.2E rms = %.2E\n", max, rms );
else
printf(" max = %.2E A rms = %.2E A\n", max, rms );
} /* loop on itst */
}
|