1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
/* ==== fd.c ============================================================
* Copyright (c) 1993, 1994 by Chris Provenzano, proven@mit.edu
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Chris Provenzano.
* 4. The name of Chris Provenzano may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY CHRIS PROVENZANO ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL CHRIS PROVENZANO BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Description : All the syscalls dealing with fds.
*
* 1.00 93/08/14 proven
* -Started coding this file.
*
* 1.01 93/11/13 proven
* -The functions readv() and writev() added.
*/
#ifndef lint
static const char rcsid[] = "fd.c,v 1.4 1995/09/11 02:26:36 hjl Exp";
#endif
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <stdarg.h>
#include <fcntl.h>
#include <errno.h>
#include <memory.h>
/*
* These first functions really should not be called by the user.
*
* I really should dynamically figure out what the table size is.
*/
static pthread_mutex_t fd_table_mutex = PTHREAD_MUTEX_INITIALIZER;
static const int dtablecount = 4096/sizeof(struct fd_table_entry);
int dtablesize;
/* ==========================================================================
* Allocate dtablecount entries at once and populate the fd_table.
*
* fd_init_entry()
*/
int fd_init_entry(int entry)
{
struct fd_table_entry *fd_entry;
int i, round;
if (fd_table[entry] == NULL) {
round = entry - entry % dtablecount;
if ((fd_entry = (struct fd_table_entry *)malloc(
sizeof(struct fd_table_entry) * dtablecount)) == NULL) {
return(NOTOK);
}
for (i = 0; i < dtablecount; i++) {
fd_table[round + i] = &fd_entry[i];
fd_table[round + i]->ops = NULL;
fd_table[round + i]->type = FD_NT;
fd_table[round + i]->fd.i = NOTOK;
fd_table[round + i]->flags = 0;
fd_table[round + i]->count = 0;
pthread_mutex_init(&(fd_table[round + i]->mutex), NULL);
pthread_queue_init(&(fd_table[round + i]->r_queue));
pthread_queue_init(&(fd_table[round + i]->w_queue));
fd_table[round + i]->r_owner = NULL;
fd_table[round + i]->w_owner = NULL;
fd_table[round + i]->r_lockcount= 0;
fd_table[round + i]->w_lockcount= 0;
fd_table[round + i]->next = NULL;
}
}
return(OK);
}
/* ==========================================================================
* fd_check_entry()
*/
int fd_check_entry(unsigned int entry)
{
int ret = OK;
pthread_mutex_lock(&fd_table_mutex);
if (entry < dtablesize) {
if (fd_table[entry] == NULL) {
if (fd_init_entry(entry)) {
SET_ERRNO(EBADF);
ret = -EBADF;
}
}
} else {
SET_ERRNO(EBADF);
ret = -EBADF;
}
pthread_mutex_unlock(&fd_table_mutex);
return(ret);
}
/* ==========================================================================
* fd_init()
*/
void fd_init(void)
{
if ((dtablesize = machdep_sys_getdtablesize()) < 0) {
/* Can't figure out the table size. */
PANIC();
}
/* This is again temporary and can be bumped up if necessary. */
if (dtablesize > 1024) {
dtablesize = 1024;
}
if ((fd_table = (struct fd_table_entry **)
malloc(sizeof(struct fd_table_entry) * dtablesize))) {
memset(fd_table, 0, sizeof(struct fd_table_entry) * dtablesize);
if (fd_check_entry(0) == OK) {
return;
}
}
/*
* There isn't enough memory to allocate a fd table at init time.
* This is a problem.
*/
PANIC();
}
/* ==========================================================================
* fd_allocate()
*/
int fd_allocate(void)
{
pthread_mutex_t * mutex;
int i;
for (i = 0; i < dtablesize; i++) {
if (fd_check_entry(i) == OK) {
mutex = &(fd_table[i]->mutex);
if (pthread_mutex_trylock(mutex)) {
continue;
}
if (fd_table[i]->count || fd_table[i]->r_owner
|| fd_table[i]->w_owner) {
pthread_mutex_unlock(mutex);
continue;
}
if (fd_table[i]->type == FD_NT) {
/* Test to see if the kernel version is in use */
if ((machdep_sys_fcntl(i, F_GETFL, NULL)) >= OK) {
/* If so continue; */
pthread_mutex_unlock(mutex);
continue;
}
}
fd_table[i]->count++;
pthread_mutex_unlock(mutex);
return(i);
}
}
SET_ERRNO(ENFILE);
return(NOTOK);
}
/* ==========================================================================
* fd_basic_basic_unlock()
*
* The real work of unlock without the locking of fd_table[fd].lock.
*/
void fd_basic_basic_unlock(struct fd_table_entry * entry, int lock_type)
{
struct pthread *pthread;
if (entry->r_owner == pthread_run) {
if ((entry->type == FD_HALF_DUPLEX) ||
(entry->type == FD_TEST_HALF_DUPLEX) ||
(lock_type == FD_READ) || (lock_type == FD_RDWR)) {
if (entry->r_lockcount == 0) {
if ((pthread = pthread_queue_deq(&entry->r_queue))) {
pthread_sched_prevent();
entry->r_owner = pthread;
if ((SET_PF_DONE_EVENT(pthread)) == OK) {
pthread_sched_other_resume(pthread);
} else {
pthread_sched_resume();
}
} else {
entry->r_owner = NULL;
}
} else {
entry->r_lockcount--;
}
}
}
if (entry->w_owner == pthread_run) {
if ((entry->type != FD_HALF_DUPLEX) &&
(entry->type != FD_TEST_HALF_DUPLEX) &&
((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
if (entry->w_lockcount == 0) {
if ((pthread = pthread_queue_deq(&entry->w_queue))) {
pthread_sched_prevent();
entry->w_owner = pthread;
if ((SET_PF_DONE_EVENT(pthread)) == OK) {
pthread_sched_other_resume(pthread);
} else {
pthread_sched_resume();
}
} else {
entry->w_owner = NULL;
}
} else {
entry->w_lockcount--;
}
}
}
}
/* ==========================================================================
* fd_basic_unlock()
*/
void fd_basic_unlock(int fd, int lock_type)
{
fd_basic_basic_unlock(fd_table[fd], lock_type);
}
/* ==========================================================================
* fd_unlock()
*/
void fd_unlock(int fd, int lock_type)
{
pthread_mutex_t *mutex;
mutex = &(fd_table[fd]->mutex);
pthread_mutex_lock(mutex);
fd_basic_basic_unlock(fd_table[fd], lock_type);
pthread_mutex_unlock(mutex);
}
/* ==========================================================================
* fd_basic_lock()
*
* The real work of lock without the locking of fd_table[fd].lock.
* Be sure to leave the lock the same way you found it. i.e. locked.
*/
int fd_basic_lock(unsigned int fd, int lock_type, pthread_mutex_t * mutex,
struct timespec * timeout)
{
switch (fd_table[fd]->type) {
case FD_NIU:
/* If not in use return EBADF error */
return(NOTOK);
break;
case FD_NT:
/*
* If not tested, test it and see if it is valid
* If not ok return EBADF error
*/
fd_kern_init(fd);
if (fd_table[fd]->type == FD_NIU) {
return(NOTOK);
}
break;
case FD_TEST_HALF_DUPLEX:
case FD_TEST_FULL_DUPLEX:
/* If a parent process reset the fd to its proper state */
if (!fork_lock) {
/* It had better be a kernel fd */
fd_kern_reset(fd);
}
break;
default:
break;
}
if ((fd_table[fd]->type == FD_HALF_DUPLEX) ||
(fd_table[fd]->type == FD_TEST_HALF_DUPLEX) ||
(lock_type == FD_READ) || (lock_type == FD_RDWR)) {
if (fd_table[fd]->r_owner) {
if (fd_table[fd]->r_owner != pthread_run) {
pthread_sched_prevent();
pthread_queue_enq(&fd_table[fd]->r_queue, pthread_run);
SET_PF_WAIT_EVENT(pthread_run);
pthread_mutex_unlock(mutex);
if (timeout) {
/* get current time */
struct timespec current_time;
machdep_gettimeofday(¤t_time);
sleep_schedule(¤t_time, timeout);
/* Reschedule will unlock pthread_run */
pthread_resched_resume(PS_FDLR_WAIT);
pthread_mutex_lock(mutex);
/* If we're the owner then we have to cancel the sleep */
if (fd_table[fd]->r_owner != pthread_run) {
CLEAR_PF_DONE_EVENT(pthread_run);
SET_ERRNO(ETIMEDOUT);
return(NOTOK);
}
sleep_cancel(pthread_run);
} else {
/* Reschedule will unlock pthread_run */
pthread_resched_resume(PS_FDLR_WAIT);
pthread_mutex_lock(mutex);
}
CLEAR_PF_DONE_EVENT(pthread_run);
} else {
fd_table[fd]->r_lockcount++;
}
}
fd_table[fd]->r_owner = pthread_run;
}
if ((fd_table[fd]->type != FD_HALF_DUPLEX) &&
(fd_table[fd]->type != FD_TEST_HALF_DUPLEX) &&
((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
if (fd_table[fd]->w_owner) {
if (fd_table[fd]->w_owner != pthread_run) {
pthread_sched_prevent();
pthread_queue_enq(&fd_table[fd]->w_queue, pthread_run);
SET_PF_WAIT_EVENT(pthread_run);
pthread_mutex_unlock(mutex);
if (timeout) {
/* get current time */
struct timespec current_time;
machdep_gettimeofday(¤t_time);
sleep_schedule(¤t_time, timeout);
/* Reschedule will unlock pthread_run */
pthread_resched_resume(PS_FDLR_WAIT);
pthread_mutex_lock(mutex);
/* If we're the owner then we have to cancel the sleep */
if (fd_table[fd]->w_owner != pthread_run) {
if (lock_type == FD_RDWR) {
/* Unlock current thread */
fd_basic_unlock(fd, FD_READ);
}
CLEAR_PF_DONE_EVENT(pthread_run);
SET_ERRNO(ETIMEDOUT);
return(NOTOK);
}
sleep_cancel(pthread_run);
} else {
/* Reschedule will unlock pthread_run */
pthread_resched_resume(PS_FDLR_WAIT);
pthread_mutex_lock(mutex);
}
CLEAR_PF_DONE_EVENT(pthread_run);
} else {
fd_table[fd]->w_lockcount++;
}
}
fd_table[fd]->w_owner = pthread_run;
}
if (!fd_table[fd]->count) {
fd_basic_unlock(fd, lock_type);
return(NOTOK);
}
return(OK);
}
/* ==========================================================================
* fd_lock()
*/
#define pthread_mutex_lock_timedwait(a, b) pthread_mutex_lock(a)
int fd_lock(unsigned int fd, int lock_type, struct timespec * timeout)
{
pthread_mutex_t *mutex;
int error;
if ((error = fd_check_entry(fd)) == OK) {
mutex = &(fd_table[fd]->mutex);
if (pthread_mutex_lock_timedwait(mutex, timeout)) {
SET_ERRNO(ETIMEDOUT);
return(-ETIMEDOUT);
}
error = fd_basic_lock(fd, lock_type, mutex, timeout);
pthread_mutex_unlock(mutex);
}
return(error);
}
/* ==========================================================================
* fd_free()
*
* Assumes fd is locked and owner by pthread_run
* Don't clear the queues, fd_unlock will do that.
*/
struct fd_table_entry * fd_free(int fd)
{
struct fd_table_entry *fd_valid;
fd_valid = NULL;
fd_table[fd]->r_lockcount = 0;
fd_table[fd]->w_lockcount = 0;
if (--fd_table[fd]->count) {
fd_valid = fd_table[fd];
fd_table[fd] = fd_table[fd]->next;
fd_valid->next = fd_table[fd]->next;
/* Don't touch queues of fd_valid */
}
fd_table[fd]->type = FD_NIU;
fd_table[fd]->fd.i = NOTOK;
fd_table[fd]->next = NULL;
fd_table[fd]->flags = 0;
fd_table[fd]->count = 0;
return(fd_valid);
}
/* ==========================================================================
* ======================================================================= */
/* ==========================================================================
* read_timedwait()
*/
ssize_t read_timedwait(int fd, void *buf, size_t nbytes,
struct timespec * timeout)
{
int ret;
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
ret = fd_table[fd]->ops->read(fd_table[fd]->fd,
fd_table[fd]->flags, buf, nbytes, timeout);
fd_unlock(fd, FD_READ);
}
return(ret);
}
/* ==========================================================================
* read()
*/
ssize_t read(int fd, void *buf, size_t nbytes)
{
return(read_timedwait(fd, buf, nbytes, NULL));
}
/* ==========================================================================
* readv_timedwait()
*/
int readv_timedwait(int fd, const struct iovec *iov, int iovcnt,
struct timespec * timeout)
{
int ret;
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
ret = fd_table[fd]->ops->readv(fd_table[fd]->fd,
fd_table[fd]->flags, iov, iovcnt, timeout);
fd_unlock(fd, FD_READ);
}
return(ret);
}
/* ==========================================================================
* readv()
*/
int readv(int fd, const struct iovec *iov, size_t iovcnt)
{
return(readv_timedwait(fd, iov, iovcnt, NULL));
}
/* ==========================================================================
* write()
*/
ssize_t write_timedwait(int fd, const void *buf, size_t nbytes,
struct timespec * timeout)
{
int ret;
if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK) {
ret = fd_table[fd]->ops->write(fd_table[fd]->fd,
fd_table[fd]->flags, buf, nbytes, timeout);
fd_unlock(fd, FD_WRITE);
}
return(ret);
}
/* ==========================================================================
* write()
*/
ssize_t write(int fd, const void * buf, size_t nbytes)
{
return(write_timedwait(fd, buf, nbytes, NULL));
}
/* ==========================================================================
* writev_timedwait()
*/
int writev_timedwait(int fd, const struct iovec *iov, int iovcnt,
struct timespec * timeout)
{
int ret;
if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK) {
ret = fd_table[fd]->ops->writev(fd_table[fd]->fd,
fd_table[fd]->flags, iov, iovcnt, timeout);
fd_unlock(fd, FD_WRITE);
}
return(ret);
}
/* ==========================================================================
* writev()
*/
int writev(int fd, const struct iovec *iov, size_t iovcnt)
{
return(writev_timedwait(fd, iov, iovcnt, NULL));
}
/* ==========================================================================
* lseek()
*/
off_t lseek(int fd, off_t offset, int whence)
{
int ret;
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
ret = fd_table[fd]->ops->seek(fd_table[fd]->fd,
fd_table[fd]->flags, offset, whence);
fd_unlock(fd, FD_RDWR);
}
return(ret);
}
/* ==========================================================================
* close()
*
* The whole close procedure is a bit odd and needs a bit of a rethink.
* For now close() locks the fd, calls fd_free() which checks to see if
* there are any other fd values poinging to the same real fd. If so
* It breaks the wait queue into two sections those that are waiting on fd
* and those waiting on other fd's. Those that are waiting on fd are connected
* to the fd_table[fd] queue, and the count is set to zero, (BUT THE LOCK IS NOT
* RELEASED). close() then calls fd_unlock which give the fd to the next queued
* element which determins that the fd is closed and then calls fd_unlock etc...
*
* XXX close() is even uglier now. You may assume that the kernel fd is the
* same as fd if fd_table[fd] == NULL or if fd_table[fd]->type == FD_NT.
* This is true because before any fd_table[fd] is allocated the corresponding
* kernel fd must be checks to see if it's valid.
*/
int close(int fd)
{
struct fd_table_entry * entry;
pthread_mutex_t *mutex;
union fd_data realfd;
int ret, flags;
/* Need to lock the newfd by hand */
if (fd < dtablesize) {
pthread_mutex_lock(&fd_table_mutex);
if (fd_table[fd]) {
pthread_mutex_unlock(&fd_table_mutex);
mutex = &(fd_table[fd]->mutex);
pthread_mutex_lock(mutex);
/*
* XXX Gross hack ... because of fork(), any fd closed by the
* parent should not change the fd of the child, unless it owns it.
*/
switch(fd_table[fd]->type) {
case FD_NIU:
pthread_mutex_unlock(mutex);
ret = -EINVAL;
break;
case FD_NT:
/*
* If it's not tested then the only valid possibility is it's
* kernel fd.
*/
ret = machdep_sys_close(fd);
fd_table[fd]->type = FD_NIU;
pthread_mutex_unlock(mutex);
break;
case FD_TEST_FULL_DUPLEX:
case FD_TEST_HALF_DUPLEX:
realfd = fd_table[fd]->fd;
flags = fd_table[fd]->flags;
if ((entry = fd_free(fd)) == NULL) {
ret = fd_table[fd]->ops->close(realfd, flags);
} else {
/* There can't be any others waiting for fd. */
pthread_mutex_unlock(&entry->mutex);
/* Note: entry->mutex = mutex */
mutex = &(fd_table[fd]->mutex);
}
pthread_mutex_unlock(mutex);
break;
default:
ret = fd_basic_lock(fd, FD_RDWR, mutex, NULL);
if (ret == OK) {
realfd = fd_table[fd]->fd;
flags = fd_table[fd]->flags;
pthread_mutex_unlock(mutex);
if ((entry = fd_free(fd)) == NULL) {
ret = fd_table[fd]->ops->close(realfd, flags);
} else {
fd_basic_basic_unlock(entry, FD_RDWR);
pthread_mutex_unlock(&entry->mutex);
/* Note: entry->mutex = mutex */
}
fd_unlock(fd, FD_RDWR);
} else {
pthread_mutex_unlock(mutex);
}
break;
}
} else {
/* Don't bother creating a table entry */
pthread_mutex_unlock(&fd_table_mutex);
ret = machdep_sys_close(fd);
}
return(ret);
}
return(-EINVAL);
}
/* ==========================================================================
* fd_basic_dup()
*
* Might need to do more than just what's below.
*/
static inline void fd_basic_dup(int fd, int newfd)
{
fd_table[newfd]->next = fd_table[fd]->next;
fd_table[fd]->next = fd_table[newfd];
fd_table[newfd] = fd_table[fd];
fd_table[fd]->count++;
}
/* ==========================================================================
* dup2()
*
* Note: Always lock the lower number fd first to avoid deadlocks.
* Note: Leave the newfd locked. It will be unlocked at close() time.
* Note: newfd must be locked by hand so it can be closed if it is open,
* or it won't be opened while dup is in progress.
*/
int dup2(fd, newfd)
{
struct fd_table_entry * entry;
pthread_mutex_t *mutex;
union fd_data realfd;
int ret, flags;
if (newfd < dtablesize) {
if (fd < newfd) {
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
/* Need to lock the newfd by hand */
mutex = &(fd_table[newfd]->mutex);
pthread_mutex_lock(mutex);
/* Is it inuse */
if (fd_basic_lock(newfd, FD_RDWR, mutex, NULL) == OK) {
realfd = fd_table[newfd]->fd;
flags = fd_table[newfd]->flags;
/* free it and check close status */
if ((entry = fd_free(newfd)) == NULL) {
entry = fd_table[newfd];
entry->ops->close(realfd, flags);
if (entry->r_queue.q_next) {
if (fd_table[fd]->next) {
fd_table[fd]->r_queue.q_last->next =
entry->r_queue.q_next;
} else {
fd_table[fd]->r_queue.q_next =
entry->r_queue.q_next;
}
fd_table[fd]->r_queue.q_last =
entry->r_queue.q_last;
}
if (entry->w_queue.q_next) {
if (fd_table[fd]->next) {
fd_table[fd]->w_queue.q_last->next =
entry->w_queue.q_next;
} else {
fd_table[fd]->w_queue.q_next =
entry->w_queue.q_next;
}
fd_table[fd]->w_queue.q_last =
entry->w_queue.q_last;
}
entry->r_queue.q_next = NULL;
entry->w_queue.q_next = NULL;
entry->r_queue.q_last = NULL;
entry->w_queue.q_last = NULL;
entry->r_owner = NULL;
entry->w_owner = NULL;
ret = OK;
} else {
fd_basic_basic_unlock(entry, FD_RDWR);
pthread_mutex_unlock(&entry->mutex);
/* Note: entry->mutex = mutex */
}
}
fd_basic_dup(fd, newfd);
}
fd_unlock(fd, FD_RDWR);
} else {
/* Need to lock the newfd by hand */
mutex = &(fd_table[newfd]->mutex);
pthread_mutex_lock(mutex);
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
/* Is newfd inuse */
if ((ret = fd_basic_lock(newfd, FD_RDWR, mutex, NULL)) == OK) {
realfd = fd_table[newfd]->fd;
flags = fd_table[newfd]->flags;
/* free it and check close status */
if ((entry = fd_free(newfd)) == NULL) {
entry = fd_table[newfd];
entry->ops->close(realfd, flags);
if (entry->r_queue.q_next) {
if (fd_table[fd]->next) {
fd_table[fd]->r_queue.q_last->next =
entry->r_queue.q_next;
} else {
fd_table[fd]->r_queue.q_next =
entry->r_queue.q_next;
}
fd_table[fd]->r_queue.q_last =
entry->r_queue.q_last;
}
if (entry->w_queue.q_next) {
if (fd_table[fd]->next) {
fd_table[fd]->w_queue.q_last->next =
entry->w_queue.q_next;
} else {
fd_table[fd]->w_queue.q_next =
entry->w_queue.q_next;
}
fd_table[fd]->w_queue.q_last =
entry->w_queue.q_last;
}
entry->r_queue.q_next = NULL;
entry->w_queue.q_next = NULL;
entry->r_queue.q_last = NULL;
entry->w_queue.q_last = NULL;
entry->r_owner = NULL;
entry->w_owner = NULL;
ret = OK;
} else {
fd_basic_basic_unlock(entry, FD_RDWR);
pthread_mutex_unlock(&entry->mutex);
/* Note: entry->mutex = mutex */
}
fd_basic_dup(fd, newfd);
}
fd_unlock(fd, FD_RDWR);
}
}
} else {
ret = NOTOK;
}
return(ret);
}
/* ==========================================================================
* dup()
*/
int dup(int fd)
{
int ret;
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
ret = fd_allocate();
fd_basic_dup(fd, ret);
fd_unlock(fd, FD_RDWR);
}
return(ret);
}
/* ==========================================================================
* fcntl()
*/
int fcntl(int fd, int cmd, ...)
{
int ret, flags;
va_list ap;
flags = 0;
if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
va_start(ap, cmd);
switch(cmd) {
case F_DUPFD:
ret = fd_allocate();
fd_basic_dup(va_arg(ap, int), ret);
break;
case F_SETFD:
break;
case F_GETFD:
break;
case F_GETFL:
ret = fd_table[fd]->flags;
break;
case F_SETFL:
flags = va_arg(ap, int);
if ((ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
fd_table[fd]->flags, cmd, flags | __FD_NONBLOCK)) == OK) {
fd_table[fd]->flags = flags;
}
break;
/* case F_SETLKW: */
/*
* Do the same as SETLK but if it fails with EACCES or EAGAIN
* block the thread and try again later, not implemented yet
*/
/* case F_SETLK: */
/* case F_GETLK:
flock = va_arg(ap, struct flock*);
ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
fd_table[fd]->flags, cmd, flock);
break; */
default:
/* Might want to make va_arg use a union */
ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
fd_table[fd]->flags, cmd, va_arg(ap, void*));
break;
}
va_end(ap);
fd_unlock(fd, FD_RDWR);
}
return(ret);
}
/* ==========================================================================
* fstat()
*
* Might want to indirect this.
*/
#ifdef __linux__
int _fxstat (int version, int fd, struct stat *buf)
{
int ret;
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
ret = __machdep_sys__fxstat (version,
fd_table[fd]->fd.i, buf);
fd_unlock(fd, FD_READ);
}
return(ret);
}
#else
int fstat(int fd, struct stat *buf)
{
int ret;
if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
ret = machdep_sys_fstat(fd_table[fd]->fd.i, buf);
fd_unlock(fd, FD_READ);
}
return(ret);
}
#endif
/* ==========================================================================
* getdtablesize()
*/
int getdtablesize()
{
return dtablesize;
}
/* ==========================================================================
* ioctl()
*
* Really want to do a real implementation of this that parses the args ala
* fcntl(), above, but it will have to be a totally platform-specific,
* nightmare-on-elm-st-style sort of thing. Might even deserve its own file
* ala select()... --SNL
*/
int
ioctl(int fd, unsigned long request, caddr_t arg)
{
int ret;
if (fd < 0 || fd >= dtablesize)
ret = NOTOK;
else if (fd_table[fd]->fd.i == NOTOK)
ret = machdep_sys_ioctl(fd, request, arg);
else if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
ret = machdep_sys_ioctl(fd_table[fd]->fd.i, request, arg);
fd_unlock(fd, FD_RDWR);
}
return ret;
}
#if defined(__ELF__) || defined(__GNU_LIBRARY__)
#include <gnu-stabs.h>
#ifdef elf_alias
elf_alias (close, __close);
elf_alias (dup, __dup);
elf_alias (dup2, __dup2);
elf_alias (fcntl, __fcntl);
elf_alias (ioctl, __ioctl);
elf_alias (lseek, __lseek);
elf_alias (read, __read);
elf_alias (readv, __readv);
elf_alias (write, __write);
elf_alias (writev, __writev);
#endif
#endif
|