1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# ALSC module for tuning Raspberry Pi
from .lsc import LSC
import libtuning as lt
import libtuning.utils as utils
from numbers import Number
import numpy as np
import logging
logger = logging.getLogger(__name__)
class ALSCRaspberryPi(LSC):
# Override the type name so that the parser can match the entry in the
# config file.
type = 'alsc'
hr_name = 'ALSC (Raspberry Pi)'
out_name = 'rpi.alsc'
compatible = ['raspberrypi']
def __init__(self, *,
do_color: lt.Param,
luminance_strength: lt.Param,
**kwargs):
super().__init__(**kwargs)
self.do_color = do_color
self.luminance_strength = luminance_strength
self.output_range = (0, 3.999)
def validate_config(self, config: dict) -> bool:
if self not in config:
logger.error(f'{self.type} not in config')
return False
valid = True
conf = config[self]
lum_key = self.luminance_strength.name
color_key = self.do_color.name
if lum_key not in conf and self.luminance_strength.required:
logger.error(f'{lum_key} is not in config')
valid = False
if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1):
logger.warning(f'{lum_key} is not in range [0, 1]; defaulting to 0.5')
if color_key not in conf and self.do_color.required:
logger.error(f'{color_key} is not in config')
valid = False
return valid
# @return Image color temperature, flattened array of red calibration table
# (containing {sector size} elements), flattened array of blue
# calibration table, flattened array of green calibration
# table
def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool):
average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0)
cg, g = self._lsc_single_channel(average_green, image)
if not do_alsc_colour:
return image.color, None, None, cg.flatten()
cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g)
cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g)
# \todo implement debug
return image.color, cr.flatten(), cb.flatten(), cg.flatten()
# @return Red shading table, Blue shading table, Green shading table,
# number of images processed
def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int):
# List of colour temperatures
list_col = []
# Associated calibration tables
list_cr = []
list_cb = []
list_cg = []
count = 0
for image in self._enumerate_lsc_images(images):
col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour)
list_col.append(col)
list_cr.append(cr)
list_cb.append(cb)
list_cg.append(cg)
count += 1
# Convert to numpy array for data manipulation
list_col = np.array(list_col)
list_cr = np.array(list_cr)
list_cb = np.array(list_cb)
list_cg = np.array(list_cg)
cal_cr_list = []
cal_cb_list = []
# Note: Calculation of average corners and center of the shading tables
# has been removed (which ctt had, as it was unused)
# Average all values for luminance shading and return one table for all temperatures
lum_lut = list(np.round(np.mean(list_cg, axis=0), 3))
if not do_alsc_colour:
return None, None, lum_lut, count
for ct in sorted(set(list_col)):
# Average tables for the same colour temperature
indices = np.where(list_col == ct)
ct = int(ct)
t_r = np.round(np.mean(list_cr[indices], axis=0), 3)
t_b = np.round(np.mean(list_cb[indices], axis=0), 3)
cr_dict = {
'ct': ct,
'table': list(t_r)
}
cb_dict = {
'ct': ct,
'table': list(t_b)
}
cal_cr_list.append(cr_dict)
cal_cb_list.append(cb_dict)
return cal_cr_list, cal_cb_list, lum_lut, count
# @brief Calculate sigma from two adjacent gain tables
def _calcSigma(self, g1, g2):
g1 = np.reshape(g1, self.sector_shape[::-1])
g2 = np.reshape(g2, self.sector_shape[::-1])
# Apply gains to gain table
gg = g1 / g2
if np.mean(gg) < 1:
gg = 1 / gg
# For each internal patch, compute average difference between it and
# its 4 neighbours, then append to list
diffs = []
for i in range(self.sector_shape[1] - 2):
for j in range(self.sector_shape[0] - 2):
# Indexing is incremented by 1 since all patches on borders are
# not counted
diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1])
diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1])
diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j])
diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2])
diffs.append(diff / 4)
mean_diff = np.mean(diffs)
return np.round(mean_diff, 5)
# @brief Obtains sigmas for red and blue, effectively a measure of the
# 'error'
def _get_sigma(self, cal_cr_list, cal_cb_list):
# Provided colour alsc tables were generated for two different colour
# temperatures sigma is calculated by comparing two calibration temperatures
# adjacent in colour space
color_temps = [cal['ct'] for cal in cal_cr_list]
# Calculate sigmas for each adjacent color_temps and return worst one
sigma_rs = []
sigma_bs = []
for i in range(len(color_temps) - 1):
sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table']))
sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table']))
# Return maximum sigmas, not necessarily from the same colour
# temperature interval
sigma_r = max(sigma_rs) if sigma_rs else 0.005
sigma_b = max(sigma_bs) if sigma_bs else 0.005
return sigma_r, sigma_b
def process(self, config: dict, images: list, outputs: dict) -> dict:
output = {
'omega': 1.3,
'n_iter': 100,
'luminance_strength': 0.7
}
conf = config[self]
general_conf = config['general']
do_alsc_colour = self.do_color.get_value(conf)
# \todo I have no idea where this input parameter is used
luminance_strength = self.luminance_strength.get_value(conf)
if luminance_strength < 0 or luminance_strength > 1:
luminance_strength = 0.5
output['luminance_strength'] = luminance_strength
# \todo Validate images from greyscale camera and force grescale mode
# \todo Debug functionality
alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf)
# \todo Handle the second green lut
cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out
if not do_alsc_colour:
output['luminance_lut'] = luminance_lut
output['n_iter'] = 0
return output
output['calibrations_Cr'] = cal_cr_list
output['calibrations_Cb'] = cal_cb_list
output['luminance_lut'] = luminance_lut
# The sigmas determine the strength of the adaptive algorithm, that
# cleans up any lens shading that has slipped through the alsc. These
# are determined by measuring a 'worst-case' difference between two
# alsc tables that are adjacent in colour space. If, however, only one
# colour temperature has been provided, then this difference can not be
# computed as only one table is available.
# To determine the sigmas you would have to estimate the error of an
# alsc table with only the image it was taken on as a check. To avoid
# circularity, dfault exaggerated sigmas are used, which can result in
# too much alsc and is therefore not advised.
# In general, just take another alsc picture at another colour
# temperature!
if count == 1:
output['sigma'] = 0.005
output['sigma_Cb'] = 0.005
logger.warning('Only one alsc calibration found; standard sigmas used for adaptive algorithm.')
return output
# Obtain worst-case scenario residual sigmas
sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list)
output['sigma'] = np.round(sigma_r, 5)
output['sigma_Cb'] = np.round(sigma_b, 5)
return output
|