1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
package cap
import (
"bytes"
"encoding/binary"
"errors"
"io"
"os"
"syscall"
"unsafe"
)
// uapi/linux/xattr.h defined.
var (
xattrNameCaps, _ = syscall.BytePtrFromString("security.capability")
)
// uapi/linux/capability.h defined.
const (
vfsCapRevisionMask = uint32(0xff000000)
vfsCapFlagsMask = ^vfsCapRevisionMask
vfsCapFlagsEffective = uint32(1)
vfsCapRevision1 = uint32(0x01000000)
vfsCapRevision2 = uint32(0x02000000)
vfsCapRevision3 = uint32(0x03000000)
)
// Data types stored in little-endian order.
type vfsCaps1 struct {
MagicEtc uint32
Data [1]struct {
Permitted, Inheritable uint32
}
}
type vfsCaps2 struct {
MagicEtc uint32
Data [2]struct {
Permitted, Inheritable uint32
}
}
type vfsCaps3 struct {
MagicEtc uint32
Data [2]struct {
Permitted, Inheritable uint32
}
RootID uint32
}
// ErrBadSize indicates the loaded file capability has
// an invalid number of bytes in it.
var ErrBadSize = errors.New("filecap bad size")
// ErrBadMagic indicates that the kernel preferred magic number for
// capability Set values is not supported by this package. This
// generally implies you are using an exceptionally old
// "../libcap/cap" package. An upgrade is needed, or failing that see
// [the Fully Capable site] for the way to report or review a bug.
//
// [the Fully Capable site]: https://sites.google.com/site/fullycapable/
var ErrBadMagic = errors.New("unsupported magic")
// ErrBadPath indicates a failed attempt to set a file capability on
// an irregular (non-executable) file.
var ErrBadPath = errors.New("file is not a regular executable")
// ErrOutOfRange indicates an erroneous value for MinExtFlagSize.
var ErrOutOfRange = errors.New("flag length invalid for export")
// digestFileCap unpacks a file capability and returns it in a *Set
// form.
func digestFileCap(d []byte, sz int, err error) (*Set, error) {
if err != nil {
return nil, err
}
var raw1 vfsCaps1
var raw2 vfsCaps2
var raw3 vfsCaps3
if sz < binary.Size(raw1) || sz > binary.Size(raw3) {
return nil, ErrBadSize
}
b := bytes.NewReader(d[:sz])
var magicEtc uint32
if err = binary.Read(b, binary.LittleEndian, &magicEtc); err != nil {
return nil, err
}
c := NewSet()
b.Seek(0, io.SeekStart)
switch magicEtc & vfsCapRevisionMask {
case vfsCapRevision1:
if err = binary.Read(b, binary.LittleEndian, &raw1); err != nil {
return nil, err
}
data := raw1.Data[0]
c.flat[0][Permitted] = data.Permitted
c.flat[0][Inheritable] = data.Inheritable
if raw1.MagicEtc&vfsCapFlagsMask == vfsCapFlagsEffective {
c.flat[0][Effective] = data.Inheritable | data.Permitted
}
case vfsCapRevision2:
if err = binary.Read(b, binary.LittleEndian, &raw2); err != nil {
return nil, err
}
for i, data := range raw2.Data {
c.flat[i][Permitted] = data.Permitted
c.flat[i][Inheritable] = data.Inheritable
if raw2.MagicEtc&vfsCapFlagsMask == vfsCapFlagsEffective {
c.flat[i][Effective] = data.Inheritable | data.Permitted
}
}
case vfsCapRevision3:
if err = binary.Read(b, binary.LittleEndian, &raw3); err != nil {
return nil, err
}
for i, data := range raw3.Data {
c.flat[i][Permitted] = data.Permitted
c.flat[i][Inheritable] = data.Inheritable
if raw3.MagicEtc&vfsCapFlagsMask == vfsCapFlagsEffective {
c.flat[i][Effective] = data.Inheritable | data.Permitted
}
}
c.nsRoot = int(raw3.RootID)
default:
return nil, ErrBadMagic
}
return c, nil
}
//go:uintptrescapes
// GetFd returns the file capabilities of an open (*os.File).Fd().
func GetFd(file *os.File) (*Set, error) {
var raw3 vfsCaps3
d := make([]byte, binary.Size(raw3))
sz, _, oErr := multisc.r6(syscall.SYS_FGETXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0)
var err error
if oErr != 0 {
err = oErr
}
return digestFileCap(d, int(sz), err)
}
//go:uintptrescapes
// GetFile returns the file capabilities of a named file.
func GetFile(path string) (*Set, error) {
p, err := syscall.BytePtrFromString(path)
if err != nil {
return nil, err
}
var raw3 vfsCaps3
d := make([]byte, binary.Size(raw3))
sz, _, oErr := multisc.r6(syscall.SYS_GETXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0)
if oErr != 0 {
err = oErr
}
return digestFileCap(d, int(sz), err)
}
// GetNSOwner returns the namespace owner UID of the capability Set.
func (c *Set) GetNSOwner() (int, error) {
if magic < kv3 {
return 0, ErrBadMagic
}
c.mu.RLock()
defer c.mu.RUnlock()
return c.nsRoot, nil
}
// SetNSOwner adds an explicit namespace owner UID to the capability
// Set. This is only honored when generating file capabilities, and is
// generally for use by a setup process when installing binaries that
// use file capabilities to become capable inside a namespace to be
// administered by that UID. If capability aware code within that
// namespace writes file capabilities without explicitly setting such
// a UID, the kernel will fix-up the capabilities to be specific to
// that owner. In this way, the kernel prevents filesystem
// capabilities from leaking out of that restricted namespace.
func (c *Set) SetNSOwner(uid int) {
c.mu.Lock()
defer c.mu.Unlock()
c.nsRoot = uid
}
// packFileCap transforms a system capability into a VFS form. Because
// of the way Linux stores capabilities in the file extended
// attributes, the process is a little lossy with respect to effective
// bits.
func (c *Set) packFileCap() ([]byte, error) {
c.mu.RLock()
defer c.mu.RUnlock()
var magic uint32
switch words {
case 1:
if c.nsRoot != 0 {
return nil, ErrBadSet // nsRoot not supported for single DWORD caps.
}
magic = vfsCapRevision1
case 2:
if c.nsRoot == 0 {
magic = vfsCapRevision2
break
}
magic = vfsCapRevision3
}
if magic == 0 {
return nil, ErrBadSize
}
eff := uint32(0)
for _, f := range c.flat {
eff |= (f[Permitted] | f[Inheritable]) & f[Effective]
}
if eff != 0 {
magic |= vfsCapFlagsEffective
}
b := new(bytes.Buffer)
binary.Write(b, binary.LittleEndian, magic)
for _, f := range c.flat {
binary.Write(b, binary.LittleEndian, f[Permitted])
binary.Write(b, binary.LittleEndian, f[Inheritable])
}
if c.nsRoot != 0 {
binary.Write(b, binary.LittleEndian, c.nsRoot)
}
return b.Bytes(), nil
}
//go:uintptrescapes
// SetFd attempts to set the file capabilities of an open
// (*os.File).Fd(). This function can also be used to delete a file's
// capabilities, by calling with c = nil.
//
// Note, Linux does not store the full Effective Flag in the metadata
// for the file. Only a single Effective bit is stored in this
// metadata. This single bit is non-zero if the Effective Flag has any
// overlapping bits with the Permitted or Inheritable Flags of c. This
// may appear suboptimal, but the reasoning behind it is sound.
// Namely, the purpose of the Effective bit it to support capabability
// unaware binaries that will only work if they magically launch with
// the needed Values already raised (this bit is sometimes referred to
// simply as the 'legacy' bit).
//
// Historical note: without *full* support for runtime capability
// manipulation, as it is provided in this "../libcap/cap" package,
// this was previously the only way for Go programs to make use of
// file capabilities.
//
// The preferred way that a binary will actually manipulate its
// file-acquired capabilities is to carefully and deliberately use
// this package (or libcap, assisted by libpsx, for threaded C/C++
// family code).
func (c *Set) SetFd(file *os.File) error {
if c == nil {
if _, _, err := multisc.r6(syscall.SYS_FREMOVEXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), 0, 0, 0, 0); err != 0 {
return err
}
return nil
}
c.mu.RLock()
defer c.mu.RUnlock()
d, err := c.packFileCap()
if err != nil {
return err
}
if _, _, err := multisc.r6(syscall.SYS_FSETXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0); err != 0 {
return err
}
return nil
}
//go:uintptrescapes
// SetFile attempts to set the file capabilities of the specified
// filename. This function can also be used to delete a file's
// capabilities, by calling with c = nil.
//
// Note, see the comment for SetFd() for some non-obvious behavior of
// Linux for the Effective Flag on the modified file.
func (c *Set) SetFile(path string) error {
fi, err := os.Stat(path)
if err != nil {
return err
}
mode := fi.Mode()
if mode&os.ModeType != 0 {
return ErrBadPath
}
if mode&os.FileMode(0111) == 0 {
return ErrBadPath
}
p, err := syscall.BytePtrFromString(path)
if err != nil {
return err
}
if c == nil {
if _, _, err := multisc.r6(syscall.SYS_REMOVEXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), 0, 0, 0, 0); err != 0 {
return err
}
return nil
}
c.mu.RLock()
defer c.mu.RUnlock()
d, err := c.packFileCap()
if err != nil {
return err
}
if _, _, err := multisc.r6(syscall.SYS_SETXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0); err != 0 {
return err
}
return nil
}
// ExtMagic is the 32-bit (little endian) magic for an external
// capability set. It can be used to transmit capabilities in binary
// format in a Linux portable way. The format is:
// <ExtMagic><byte:length><length-bytes*3-of-cap-data>.
const ExtMagic = uint32(0x5101c290)
// Import imports a Set from a byte array where it has been stored in
// a portable (lossless) way. That is values exported by
// libcap.cap_copy_ext() and Export().
func Import(d []byte) (*Set, error) {
b := bytes.NewBuffer(d)
var m uint32
if err := binary.Read(b, binary.LittleEndian, &m); err != nil {
return nil, ErrBadSize
} else if m != ExtMagic {
return nil, ErrBadMagic
}
var n byte
if err := binary.Read(b, binary.LittleEndian, &n); err != nil {
return nil, ErrBadSize
}
c := NewSet()
if int(n) > 4*words {
return nil, ErrBadSize
}
f := make([]byte, 3)
for i := 0; i < words; i++ {
for j := uint(0); n > 0 && j < 4; j++ {
n--
if x, err := b.Read(f); err != nil || x != 3 {
return nil, ErrBadSize
}
sh := 8 * j
c.flat[i][Effective] |= uint32(f[0]) << sh
c.flat[i][Permitted] |= uint32(f[1]) << sh
c.flat[i][Inheritable] |= uint32(f[2]) << sh
}
}
return c, nil
}
// MinExtFlagSize defaults to 8 in order to be equivalent to libcap
// defaults. Setting it to zero can generate smaller external
// representations. Such smaller representations can be imported by
// libcap and the Go package just fine, we just default to the default
// libcap representation for legacy reasons.
var MinExtFlagSize = uint(8)
// Export exports a Set into a lossless byte array format where it is
// stored in a portable way. Note, any namespace owner in the Set
// content is not exported by this function.
//
// Note, Export() generates exported byte streams that are importable
// by libcap.cap_copy_int() as well as Import().
func (c *Set) Export() ([]byte, error) {
if err := c.good(); err != nil {
return nil, err
}
if MinExtFlagSize > 255 {
return nil, ErrOutOfRange
}
b := new(bytes.Buffer)
binary.Write(b, binary.LittleEndian, ExtMagic)
c.mu.RLock()
defer c.mu.RUnlock()
var n = uint(0)
for i, f := range c.flat {
if nn := 4 * uint(i); nn+4 > n {
if u := f[Effective] | f[Permitted] | f[Inheritable]; u != 0 {
n = nn
for ; u != 0; u >>= 8 {
n++
}
}
}
}
if n < MinExtFlagSize {
n = MinExtFlagSize
}
b.Write([]byte{byte(n)})
for _, f := range c.flat {
if n == 0 {
break
}
eff, per, inh := f[Effective], f[Permitted], f[Inheritable]
for i := 0; n > 0 && i < 4; i++ {
n--
b.Write([]byte{
byte(eff & 0xff),
byte(per & 0xff),
byte(inh & 0xff),
})
eff >>= 8
per >>= 8
inh >>= 8
}
}
for n > 0 {
n--
b.Write([]byte{0, 0, 0})
}
return b.Bytes(), nil
}
|