1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
package cap
import "errors"
// GetFlag determines if the requested Value is enabled in the
// specified Flag of the capability Set.
func (c *Set) GetFlag(vec Flag, val Value) (bool, error) {
if err := c.good(); err != nil {
// Checked this first, because otherwise we are sure
// cInit has been called.
return false, err
}
offset, mask, err := bitOf(vec, val)
if err != nil {
return false, err
}
c.mu.RLock()
defer c.mu.RUnlock()
return c.flat[offset][vec]&mask != 0, nil
}
// SetFlag sets the requested bits to the indicated enable state. This
// function does not perform any security checks, so values can be set
// out-of-order. Only when the Set is used to SetProc() etc., will the
// bits be checked for validity and permission by the kernel. If the
// function returns an error, the Set will not be modified.
func (c *Set) SetFlag(vec Flag, enable bool, val ...Value) error {
if err := c.good(); err != nil {
// Checked this first, because otherwise we are sure
// cInit has been called.
return err
}
c.mu.Lock()
defer c.mu.Unlock()
// Make a backup.
replace := make([]uint32, words)
for i := range replace {
replace[i] = c.flat[i][vec]
}
var err error
for _, v := range val {
offset, mask, err2 := bitOf(vec, v)
if err2 != nil {
err = err2
break
}
if enable {
c.flat[offset][vec] |= mask
} else {
c.flat[offset][vec] &= ^mask
}
}
if err == nil {
return nil
}
// Clean up.
for i, bits := range replace {
c.flat[i][vec] = bits
}
return err
}
// Clear fully clears a capability set.
func (c *Set) Clear() error {
if err := c.good(); err != nil {
return err
}
// startUp.Do(cInit) is not called here because c cannot be
// initialized except via this package and doing that will
// perform that call at least once (sic).
c.mu.Lock()
defer c.mu.Unlock()
c.flat = make([]data, words)
c.nsRoot = 0
return nil
}
// FillFlag copies the from flag values of ref into the to flag of
// c. With this function, you can raise all of the permitted values in
// the c Set from those in ref with c.Fill(cap.Permitted, ref,
// cap.Permitted).
func (c *Set) FillFlag(to Flag, ref *Set, from Flag) error {
if err := c.good(); err != nil {
return err
}
if err := ref.good(); err != nil {
return err
}
if to > Inheritable || from > Inheritable {
return ErrBadValue
}
// Avoid deadlock by using a copy.
if c != ref {
var err error
ref, err = ref.Dup()
if err != nil {
return err
}
}
c.mu.Lock()
defer c.mu.Unlock()
for i := range c.flat {
c.flat[i][to] = ref.flat[i][from]
}
return nil
}
// Fill copies the from flag values into the to flag. With this
// function, you can raise all of the permitted values in the
// effective flag with c.Fill(cap.Effective, cap.Permitted).
func (c *Set) Fill(to, from Flag) error {
return c.FillFlag(to, c, from)
}
// ErrBadValue indicates a bad capability value was specified.
var ErrBadValue = errors.New("bad capability value")
// bitOf converts from a Value into the offset and mask for a specific
// Value bit in the compressed (kernel ABI) representation of a
// capabilities. If the requested bit is unsupported, an error is
// returned.
func bitOf(vec Flag, val Value) (uint, uint32, error) {
if vec > Inheritable || val > Value(words*32) {
return 0, 0, ErrBadValue
}
u := uint(val)
return u / 32, uint32(1) << (u % 32), nil
}
// allMask returns the mask of valid bits in the all mask for index.
func allMask(index uint) (mask uint32) {
if maxValues == 0 {
panic("uninitialized package")
}
base := 32 * uint(index)
if maxValues <= base {
return
}
if maxValues >= 32+base {
mask = ^mask
return
}
mask = uint32((uint64(1) << (maxValues % 32)) - 1)
return
}
// forceFlag sets 'all' capability values (supported by the kernel) of
// a specified Flag to enable.
func (c *Set) forceFlag(vec Flag, enable bool) error {
if err := c.good(); err != nil {
return err
}
if vec > Inheritable {
return ErrBadSet
}
m := uint32(0)
if enable {
m = ^m
}
c.mu.Lock()
defer c.mu.Unlock()
for i := range c.flat {
c.flat[i][vec] = m & allMask(uint(i))
}
return nil
}
// ClearFlag clears all the Values associated with the specified Flag.
func (c *Set) ClearFlag(vec Flag) error {
return c.forceFlag(vec, false)
}
// Cf returns 0 if c and d are identical. A non-zero Diff value
// captures a simple macroscopic summary of how they differ. The
// (Diff).Has() function can be used to determine how the two
// capability sets differ.
func (c *Set) Cf(d *Set) (Diff, error) {
if err := c.good(); err != nil {
return 0, err
}
if c == d {
return 0, nil
}
d, err := d.Dup()
if err != nil {
return 0, err
}
c.mu.RLock()
defer c.mu.RUnlock()
var cf Diff
for i := 0; i < words; i++ {
if c.flat[i][Effective]^d.flat[i][Effective] != 0 {
cf |= effectiveDiff
}
if c.flat[i][Permitted]^d.flat[i][Permitted] != 0 {
cf |= permittedDiff
}
if c.flat[i][Inheritable]^d.flat[i][Inheritable] != 0 {
cf |= inheritableDiff
}
}
return cf, nil
}
// Compare returns 0 if c and d are identical in content.
//
// Deprecated: Replace with (*Set).Cf().
//
// Example, replace this:
//
// diff, err := a.Compare(b)
// if err != nil {
// return err
// }
// if diff == 0 {
// return nil
// }
// if diff & (1 << Effective) {
// log.Print("a and b difference includes Effective values")
// }
//
// with this:
//
// diff, err := a.Cf(b)
// if err != nil {
// return err
// }
// if diff == 0 {
// return nil
// }
// if diff.Has(Effective) {
// log.Print("a and b difference includes Effective values")
// }
func (c *Set) Compare(d *Set) (uint, error) {
u, err := c.Cf(d)
return uint(u), err
}
// Differs processes the result of Compare and determines if the
// Flag's components were different.
//
// Deprecated: Replace with (Diff).Has().
//
// Example, replace this:
//
// diff, err := a.Compare(b)
// ...
// if diff & (1 << Effective) {
// ... different effective capabilities ...
// }
//
// with this:
//
// diff, err := a.Cf(b)
// ...
// if diff.Has(Effective) {
// ... different effective capabilities ...
// }
func Differs(cf uint, vec Flag) bool {
return cf&(1<<vec) != 0
}
// Has processes the Diff result of (*Set).Cf() and determines if the
// Flag's components were different in that result.
func (cf Diff) Has(vec Flag) bool {
return uint(cf)&(1<<vec) != 0
}
|